Crops ›› 2016, Vol. 32 ›› Issue (6): 26-32.doi: 10.16035/j.issn.1001-7283.2016.06.005
Previous Articles Next Articles
Chen Ying,Zhou Zhenxiang,Zhou Tianyang,Xu Zhiwei,Wang Zhiqin,Gu Junfei
[1] |
张耗, 薛亚光, 杨建昌 . 水稻高产与养分高效利用的限制因素与栽培技术.中国稻米, 2013(4):5-7.
doi: 10.3969/j.issn.1006-8082.2013.04.002 |
[2] | 江立庚, 曹卫星 . 水稻高效利用氮素的生理机制及有效途径.中国水稻科学, 2002(3):64-67. |
[3] |
Peng S B, Buresh R J, Huang J L , et al. Improving nitrogen fertilization in rice by site-specific N management:a review. Agronomy for Sustainable Development, 2010,30(3):649-656.
doi: 10.1051/agro/2010002 |
[4] |
Peng S B, Buresh R J, Huang J L , et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006,96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004 |
[5] |
Zhang Z J, Chu G, Liu L J , et al. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013,150(15):9-18.
doi: 10.1016/j.fcr.2013.06.002 |
[6] |
Xue Y G, Duan H, Liu L J , et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013,53(1):271-284.
doi: 10.2135/cropsci2012.06.0360 |
[7] |
Zhang W F, Dou Z X, He P , et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(21):8375-8380.
doi: 10.1073/pnas.1210447110 |
[8] |
徐优, 王学华 . 我国水稻氮肥高效利用的研究进展. 作物研究, 2014,28(5):564-569.
doi: 10.3969/j.issn.1001-5280.2014.05.26 |
[9] |
张亚丽, 樊剑波, 段英华 , 等. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008,45(2):267-273.
doi: 10.3321/j.issn:0564-3929.2008.02.011 |
[10] |
王小燕, 马国辉, 狄浩 , 等. 纳米增效尿素对水稻产量及氮肥农学利用率的影响. 植物营养与肥料学报, 2010,16(6):1479-1485.
doi: 10.11674/zwyf.2010.0625 |
[11] |
薛亚光, 陈婷婷, 杨成 , 等. 中粳稻不同栽培模式对产量及其生理特性的影响. 作物学报, 2010,36(3):466-476.
doi: 10.3724/SP.J.1006.2010.00466 |
[12] | Fitter A . Characteristics and functions of root systems.//Waisel Y,Eshel A,Kafkafi U.Plant Roots,the Hidden Half. New York:Marcel Dekker Inc, 2002: 15-32. |
[13] |
Fitter A H . Roots as dynamic systems:the developmental ecology of roots and root systems.//Press M C,Scholes J D,Barker M G.Plant Physiological Ecology. London:Blackwell Scientific, 1999: 115-131.
doi: 10.5553/EJLR/138723702015017002005 |
[14] | Inukai Y, Ashikari M, Kitano H . Function of the root system and molecular mechanism of crown root formation in rice. Plant and Cell Physiology, 2004,45(S):S17. |
[15] |
Cassman K G, Dobermann A, Walters D T . Agroecosystems,nitrogen-use efficiency and nitrogen management, Ambio, 2002,31(2):132-140.
doi: 10.1579/0044-7447-31.2.132 pmid: 12078002 |
[16] |
程建峰, 戴廷波, 荆奇 , 等. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007,44(2):266-272.
doi: 10.3321/j.issn:0564-3929.2007.02.011 |
[17] |
魏海燕, 张洪程, 张胜飞 , 等. 不同水稻氮利用效率基因型的根系形态与生理指标研究. 作物学报, 2008,34(3):429-436.
doi: 10.3724/SP.J.1006.2008.00429 |
[18] |
Yang J C . Approaches to achieve high grain yield and high resource use efficiency in rice. Frontiers of Agricultural Science and Engineering, 2015,2(2):115-123.
doi: 10.15302/J-FASE-2015055 |
[19] |
戢林, 李廷轩, 张锡洲 , 等. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012,45(23):4770-4781.
doi: 10.3864/j.issn.0578-1752.2012.23.003 |
[20] |
杨建昌 . 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44(1):36-46.
doi: 10.3864/j.issn.0578-1752.2011.01.005 |
[21] |
段英华, 张亚丽, 王松伟 , 等 .铵硝比(NH4+/NO3-)对不同氮素利用效率水稻的生理效应.南京农业大学学报 , 2007(3):73-77.
doi: 10.3321/j.issn:1000-2030.2007.03.014 |
[22] |
Kong Y, Wang Z, Chen J , et al. Effects of ethephon on aerenchyma formation in rice roots. Rice Science, 2009,16(3):210-216.
doi: 10.1016/S1672-6308(08)60081-5 |
[23] |
Guo S W, Chen G, Zhou Y , et al. Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant Soil, 2007,296(1-2):115-124.
doi: 10.1007/s11104-007-9302-9 |
[24] | 肖焱波, 李文学, 段宗颜 , 等. 植物对硝态氮的吸收及其调控. 中国农业科技导报, 2002,4(2):56-59. |
[25] | 张亚丽, 段英华, 沈其荣 . 水稻对硝态氮响应的生理指标筛选. 土壤学报, 2004,41(4):571-576. |
[26] | 段英华, 张亚丽, 沈其荣 . 增硝营养对不同基因型水稻苗期吸铵和生长的影响. 土壤学报, 2005,42(2):260-265. |
[27] |
Duan Y H, Zhang Y L, Ye L T , et al. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, 2007,99(6):1153-1160.
doi: 10.1093/aob/mcm051 pmid: 17428833 |
[28] | 马雪峰, 高旻, 程治军 . 植物氮素吸收与利用的分子机制研究进展.作物杂志, 2013(4):32-38. |
[29] | 陈晓亚, 薛红卫 . 植物生理与分子生物学.北京: 高等教育出版社, 2012. |
[30] |
Ranathunge K, El-Kereamy A, Gidda S , et al. OsAMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions . Journal of Experimental Botany, 2014,65(4):965-979.
doi: 10.1093/jxb/ert458 |
[31] |
Sonoda Y, Ikeda A, Saiki S , et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant and Cell Physiology, 2003,44(7):726-734.
doi: 10.1093/pcp/pcg083 pmid: 12881500 |
[32] |
陆海燕, 李胜元, 唐仲 , 等. 超表达OsNRT2.3b促进水稻武育粳7号生长和提高籽粒产量. 分子植物育种, 2015,13(3):497-504.
doi: 10.13271/j.mpb.013.000497 |
[33] |
张晓果, 王丹英, 计成林 , 等. 水稻氮素吸收利用研究进展. 中国稻米, 2015,21(5):13-19.
doi: 10.3969/j.issn.1006-8082.2015.05.003 |
[34] |
Chen J G, Zhang Y, Tan Y W , et al. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal, 2016,14(8):1705-1715.
doi: 10.1111/pbi.2016.14.issue-8 |
[35] |
唐仲 . 水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a/b生物学功能分析. 南京:南京农业大学, 2012.
doi: 10.7666/d.Y2360186 |
[36] | Mae T, Makino A, Ohira K . Changes in the amount of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant and Cell Physiology, 1983,24(6):1079-1086. |
[37] | Mae T, Ohira K . The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant and Cell Physiology, 1981,22(6):1067-1074. |
[38] |
Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008,108:32-38.
doi: 10.1016/j.fcr.2008.04.001 |
[39] |
Moreau D, Allard V, Gaju O , et al. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology, 2012,160:1479-1490.
doi: 10.1104/pp.112.199935 |
[40] | Pons T L, Schieving F, Hirose T , et al. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. // Lambers H, Cambridge M L, Konings H , et al.Causes and consequences of variation in growth rate and productivity of higher plants.SPB Academic Publishing,The Hague,The Netherlands, 1989: 175-186. |
[41] |
Anten N, Schieving F, Werger M . Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 1995,101:504-513.
doi: 10.1007/BF00329431 |
[42] |
Yin X, Lantinga E A, Schapendonk A H C M , et al.Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Annals of Botany, 2003,91:893-903.
doi: 10.1093/aob/mcg096 |
[43] |
Hikosaka K . Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.Plant, Cell & Environment, 2014,37:2077-2085.
doi: 10.1111/pce.12291 pmid: 24506525 |
[44] | Dingkuhn M, Penning de Vries F W T, De Datta S K , et al.Concepts for a new plant type for direct seeded flooded tropical rice.In:Direct seeded flooded rice in the tropics,International Rice Research Institute,Los Baños, Philippines, 1991: 17-38. |
[45] |
Ort D R, Merchant S S, Alric J , et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(28):8529-8536.
doi: 10.1073/pnas.1424031112 pmid: 26124102 |
[46] |
Ort D R, Zhu X, Melis A . Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology, 2011,155(1):79-85.
doi: 10.1104/pp.110.165886 pmid: 21078863 |
[47] |
Melis A, Neidhardt J, Benemann J R . Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology, 1998,10(6):515-525.
doi: 10.1023/A:1008076231267 |
[48] |
Melis A . Solar energy conversion efficiencies in photosynthesis:minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 2009,177(4):272-280.
doi: 10.1016/j.plantsci.2009.06.005 |
[49] | Polle J E, Kanakagiri S D, Melis A .tla1,a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta, 2003,217(1):49-59. |
[50] |
顾骏飞, 周振翔, 李志康 , 等. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016,42(4):551-560.
doi: 10.3724/SP.J.1006.2016.00551 |
[51] | 周振翔, 李志康, 陈颖 , 等. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响. 中国农业科学, 2016,49(19):3709-3720. |
[52] |
Zhu X G, Long S P, Ort D R . Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010,61:235-261.
doi: 10.1146/annurev-arplant-042809-112206 pmid: 20192734 |
[53] | 王忠 . 植物生理学. 北京: 中国农业出版社, 2009. |
[54] | Smith A M, Couplant G, Dolam L , et al. Plant biology.Garland Science,Taylor & Francis Group, LLC, 2012. |
[55] |
阮新民, 施伏芝, 从夕汉 , 等. 氮高效利用水稻碳氮代谢物含量的变化特征.作物杂志, 2015(6):76-83.
doi: 10.16035/j.issn.1001-7283.2015.06.014 |
[56] |
宁书菊, 陈晓飞, 张国英 , 等. 水稻生育后期剑叶氮代谢相关酶活性及动力学变化. 中国生态农业学报, 2012,20(12):1606-1613.
doi: 10.3724/SP.J.1011.2012.01606 |
[57] |
Maria V C, Carla C, Irma N R , et al. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, 2009,166(16):1775-1785.
doi: 10.1016/j.jplph.2009.05.007 |
[58] | 杨安中, 牟筱玲, 李孟良 , 等. 喷施细胞分裂素类物质对地膜旱作水稻防衰及增产效应. 水土保持学报, 2005,19(2):199-200. |
[59] | 陈新红, 刘凯, 奚岭林 , 等. 土壤水分与氮素对水稻地上器官脱落酸和细胞分裂素含量的影响. 作物学报, 2005,31(11):22-30. |
[60] |
Ju C, Buresh R J, Wang Z , et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015,175:47-55.
doi: 10.1016/j.fcr.2015.02.007 |
[61] |
Sui B, Feng X M, Tian G L , et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 2013,150:99-107.
doi: 10.1016/j.fcr.2013.06.012 |
[62] |
李勇 . 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究. 南京:南京农业大学, 2011.
doi: 10.7666/d.Y2038625 |
[63] |
章起明, 曾勇军, 吕伟生 , 等. 每穴苗数和施氮量对双季机插稻产量及氮肥利用效率的影响.作物杂志, 2016(3):144-150.
doi: 10.16035/j.issn.1001-7283.2016.03.027 |
[64] |
刘立军, 杨立年, 孙小淋 , 等. 水稻实地氮肥管理的氮肥利用效率及其生理原因. 作物学报, 2009,35(9):1672-1680.
doi: 10.3724/SP.J.1006.2009.01672 |
[65] |
潘剑玲, 代万安, 尚占环 , 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21(5):526-535.
doi: 10.3724/SP.J.1011.2013.00526 |
[66] | 韩新忠, 朱利群, 杨敏芳 , 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012,31(11):2192-2199. |
[67] |
刘立军, 王康君, 卞金龙 , 等. 结实期干湿交替灌溉对籽粒蛋白质含量不同的转基因水稻的生理特性及产量的影响. 中国水稻科学, 2014,28(4):384-390.
doi: 10.3969/j.issn.10017216.2014.04.007 |
[68] |
张自常, 李鸿伟, 陈婷婷 , 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998.
doi: 10.3864/j.issn.0578-1752.2011.24.003 |
|