Crops ›› 2017, Vol. 33 ›› Issue (1): 14-19.doi: 10.16035/j.issn.1001-7283.2017.01.003

Previous Articles     Next Articles

Advances in Cd Uptake and Transport in Rice

Zhou Zhibo1,2,Yi Yake1,2,Chen Guanghui1,2   

  1. 1 College of Agronomy,Hunan Agricultural University,Changsha 410128,Hunan,China
    2 Collaborative InnovationCenter of Paddy Crop and Oil Crops in Southern,Changsha 410128,Hunan,China
  • Received:2016-10-14 Revised:2016-12-07 Online:2017-02-15 Published:2018-08-26

Abstract:

The Cd uptake pathway of rice in different vegetative organs and the functional analysis of related protein transporters in rice from root Cd uptake, root Cd efflux, cell wall fixation and vacuolar segregation, root transport to shoot and so on were summarized, and the internal and external factors that affect the uptake and transport of Cd in rice, problems and future research directions were elaborated in this study.

Key words: Oryza sativa, Vegetative organs, Cadmium, Transporter

Fig.1

The Cd uptake pathway in rice root"

Fig.2

The schematic of Cd uptake and transport in rice roots (A:Root Cd uptake,B:Root Cd efflux,C:Cell wall fixation,D:Vacuolar compartmentalization,E:Transport Cd to shoot,“→”transport direction)"

[1] 李婧, 周艳文, 陈森 , 等. 我国土壤镉污染现状、危害及其治理方法综述. 安徽农学通报, 2015,21(24):104-107.
[2] 史静, 潘根兴, 夏运生 , 等. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响.生态环境学报, 2013(5):832-837.
[3] 李冰, 王昌全, 李枝 , 等. Cd胁迫下杂交水稻对Cd的吸收及其动态变化.生态环境学报, 2014(2):312-316.
[4] Mendez-Armenta M, Rios C . Cadmium neurotoxicity. Environmental Toxicology Pharmacology, 2007,23:350-358.
doi: 10.1016/j.etap.2006.11.009
[5] 孟桂元, 蒋端生, 柏连阳 , 等. Cd胁迫下苎麻的生长响应与富集、转运特征研究. 生态科学, 2012,31(2):192-196.
[6] 杨朝东, 张霞, 刘国锋 , 等. 植物根中质外体屏障结构和生理功能研究进展.植物研究, 2013(1):114-119.
[7] 曾翔 . 水稻镉积累和耐性机理及其品种间差异研究. 长沙:湖南农业大学, 2006.
[8] 张利强 . 水稻重金属镉的吸收、转运和积累特性研究. 北京:中国农业科学院, 2012.
[9] 李燕婷, 李秀英, 肖艳 , 等. 叶面肥的营养机理及应用研究进展.中国农业科学, 2009(1):162-172.
[10] 龙思斯, 宋正国, 雷鸣 , 等. 不同外源镉对水稻生长和富集镉的影响研究.农业环境科学学报, 2016(3):419-424.
[11] Verbruggen N, Hermans C, Schat H . Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 2009,12(3):364-372.
doi: 10.1016/j.pbi.2009.05.001
[12] 王亚平, 潘小菲, 许春雪 , 等. 土壤对镉离子的竞争吸附研究—以北京城近郊为例.岩矿测试, 2007(4):251-256.
[13] 张参俊, 尹洁, 张长波 , 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响.农业环境科学学报, 2015(6):1028-1033.
[14] 杨菲, 唐明凤, 朱玉兴 . 水稻对镉的吸收和转运的分子机理.杂交水稻, 2015(3):2-8.
[15] Moons A . Ospdr9,which encodes a PDR-type ABC transporter,is induced by heavy metals,hypoxic stress and redox perturbations in rice roots. FEBS Letters, 2003,553(3):370-376.
doi: 10.1016/S0014-5793(03)01060-3
[16] Ishimaru Y, Bashir K, Nakanishi H , et al. OsNRAMP5,a major player for constitutive iron and manganese uptake in rice. Plant Signaling & Behavior, 2012,7(7):763-766.
[17] Yongjie Y, Jie X, Ruijie C . Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa.). Environmental and Experimental Botany, 2016,122:141-149.
doi: 10.1016/j.envexpbot.2015.10.001
[18] Curie C, Cassin G, Couch D , et al. Metal movement within the plant:Contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009,103(1):1-11.
doi: 10.1093/aob/mcn207
[19] Hugo S, Yasuhiro I, Gynheung A . Low cadmium (LCD),a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011,62(15):5727-5734.
doi: 10.1093/jxb/err300
[20] Lee S, Kim Y Y, Lee Y , et al. Rice P1B-type heavy-metal AT-Pase,OsHMA9,is a metal efflux protein. Plant Physiology, 2007,145(3):831-842.
doi: 10.1104/pp.107.102236
[21] 段德超, 于明革, 施积炎 . 植物对铅的吸收、转运、累积和解毒机制研究进展.应用生态学报, 2014(1):287-296.
[22] Xiong J, An L, Lu H , et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009,230(4):755-765.
doi: 10.1007/s00425-009-0984-5
[23] 刘宝秀, 袁连玉, 王晶 , 等. 水稻金属耐受蛋白基因OsMTP2生物信息学及表达分析.热带亚热带植物学报, 2012(1):8-12.
[24] Sasaki A, Yamaji N, Ma J F . Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014,65(20):6013-6021.
doi: 10.1093/jxb/eru340
[25] Huang X Y, Deng F, Yamaji N , et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nature Communications, 2016,7:12138.
doi: 10.1038/ncomms12138
[26] Vliet V L, Peterson C, Hale B . Cd accumulation in roots and shoots of durum wheat:the roles of transpiration rate and apoplastic bypass. Journal of Experimental Botany, 2007,58(11):2939-2947.
doi: 10.1093/jxb/erm119
[27] 张军, 束文圣 . 植物对重金属镉的耐受机制.植物生理与分子生物学学报, 2006(1):1-8.
[28] Xin J L, Huang B H, Dai H W . Difference in root-to-shoot Cd translocation and characterization of Cd accumulation during fruit development in two capsicum annuum cultivars. Plant and Soil, 2015,394(1-2):287-300.
doi: 10.1007/s11104-015-2535-0
[29] 韩立娜, 居学海, 张长波 , 等. 水稻镉离子流速的基因型差异及其与镉积累量的关系研究.农业环境科学学报, 2014(1):37-42.
[30] Fontanili L, Lancilli C, Suzui N , et al. Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice, 2016,9(1):16.
doi: 10.1186/s12284-016-0088-3
[31] 柳检, 罗立强 . As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展.岩矿测试, 2015(3):269-277.
[32] Oda K, Otani M, Uraguchi S , et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Bioscience Biotechnology Biochemistry, 2011,75(6):1211-1213.
doi: 10.1271/bbb.110193
[33] Satoh-Nagasawa N, Mori M, Sakurai K , et al. Functional relationship heavy metal P-type ATPases (OsHMA2 and OsHMA3) of rice (Oryza sativa) using RNAi. Plant Biotechnology, 2013,30(5):511-515.
doi: 10.5511/plantbiotechnology.13.0616a
[34] Meng Y, Yuanyuan Z, Lejing Z , et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014,65(17):4849-4861
doi: 10.1093/jxb/eru259
[35] Takahashi R, Ishimaru Y, Senoura T , et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011,62(14):4843-4850.
doi: 10.1093/jxb/err136
[36] Tanaka K, Fujimaki S, Fujiwara T , et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2007,53(1):72-77.
doi: 10.1111/j.1747-0765.2007.00116.x
[37] Yoneyama T, Ishikawa S, Fujimaki S . Route and regulation of zinc,cadmium,and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling:Metal transporters,metal speciation,grain Cd reduction and Zn and Fe biofortification. International Journal Molecular Sciences, 2015,16(8):19111-19129.
doi: 10.3390/ijms160819111
[38] Kobayashi N I, Tanoi K, Hirose A . Characterization of rapid inter vascular transport of cadmium in rice stem by radioisotope imaging. Journal of Experimental Botany, 2013,64(2):507-517.
doi: 10.1093/jxb/ers344
[39] Tanaka K, Fujimaki S, Fujiwara T , et al. Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L) treated with a nutrient solution containing cadmium. Soil Science and Plant Nutrition, 2003,49(2):311-313.
doi: 10.1080/00380768.2003.10410014
[40] Kashiwagi T, Shindoh K, Hirotsu N , et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biology, 2009,9(8):1-10.
doi: 10.1186/1471-2229-9-1
[41] Yamaji N, Xia J X, Mitani-Ueno N , et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013,162(2):927-939.
doi: 10.1104/pp.113.216564
[42] Shimpei U, Takehiro K, Takuya S . Low-affinity cation transporter(OsLCT1) regulates cadmium transport into rice grains. Proceedings of The National Academy of Sciences of The Stations of America, 2011,108(52):20959-20964.
doi: 10.1073/pnas.1116531109
[43] 曾翔, 张玉烛, 王凯荣 , 等. 不同品种水稻糙米含镉量差异.生态与农村环境学报, 2006(1):67-69,83.
[44] 李坤权, 刘建国, 陆小龙 , 等. 水稻不同品种对镉吸收及分配的差异.农业环境科学学报, 2003(5):529-532.
[45] 张洪江 . 镉安全水稻亲本材料的筛选及其生理机制研究. 成都:四川农业大学, 2012.
[46] Ueno D, Kono I, Yokosho K , et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009,182(3):644-653.
doi: 10.1111/j.1469-8137.2009.02784.x
[47] Ishikawa S, Ae N, Yano M . Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice. New Phytologist, 2005,168(2):345-350.
doi: 10.1111/j.1469-8137.2005.01516.x
[48] 刘利, 郝小花, 田连福 , 等. 植物吸收、转运和积累镉的机理研究进展.生命科学研究, 2015(2):176-184.
[49] 陈京都, 刘萌, 顾海燕 , 等. 不同土壤质地条件下麦秸、铅对镉在水稻-土壤系统中迁移的影响.农业环境科学学报, 2011(7):1295-1299.
[50] 吴曼, 徐明岗, 徐绍辉 , 等. 有机质对红壤和黑土中外源铅镉稳定化过程的影响. 农业环境科学学报, 2011,30(3):461-467.
[51] 陈雪, 刘丹青, 王淑 , 等. 不同土壤的还原状况对铁镉形态转化和水稻吸收的影响.土壤学报, 2013(3):548-555.
[52] 杨忠芳, 陈岳龙, 钱鑂 , 等. 土壤pH对镉存在形态影响的模拟实验研究.地学前缘, 2005(1):252-260.
[53] 陈爱葵, 王茂意, 刘晓海 , 等. 水稻对重金属镉的吸收及耐性机理研究进展.生态科学, 2013(4):514-522.
[54] 张雪霞, 张晓霞, 郑煜基 , 等. 水分管理对硫铁镉在水稻根区变化规律及其在水稻中积累的影响.环境科学, 2013(7):2837-2846.
[55] 何洋, 刘洋, 方宝华 , 等. 温度对不同水稻品种糙米镉(Cd)含量的影响.中国稻米, 2016(2):31-35.
[56] 贾倩, 胡敏, 张洋洋 , 等. 钾硅肥施用对水稻吸收铅、镉的影响.农业环境科学学报, 2015(12):2245-2251.
[1] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[2] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[3] Yuqiao Cao,Qingkai Nie,Yun Gao,Zicheng Xu,Wuxing Huang. The Studies on Cadmium and Its Chelate Related Transporters in Plants [J]. Crops, 2018, 34(3): 15-24.
[4] Haiyun Rui,Zhenguo Shen,Fenqin Zhang. Effects of Soil Cadmium Contamination on Growth, Cadmium Accumulation and Nutrient Uptake of Vicia sativa L. [J]. Crops, 2017, 33(6): 104-108.
[5] Chang Liu,Xuemei Li,Jiayuan Tan,Xiaomin Liang,Xuemei Li. Effects of Water Stress Simulated by PEG on Content of Mineral Elements in Rice Seedlings [J]. Crops, 2017, 33(5): 162-167.
[6] Haiyun Rui,Xingxing Zhang,Zhenguo Shen,Fenqin Zhang. Water Deficit Stress and Osmotic Substances Accumulation of Vicia sativa L. under Cadmium Stress [J]. Crops, 2017, 33(3): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .