Crops ›› 2017, Vol. 33 ›› Issue (3): 13-18.doi: 10.16035/j.issn.1001-7283.2017.03.003

Previous Articles     Next Articles

Quantitative Genetic Research of Plant Height and Ear Height in Maize under Different Environments

He Wenzhao,Wang Hongwu,Hu Xiaojiao,Li Kun,Wang Qi,Wu Yujin,Liu Zhifang,Huang Changling   

  1. Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2017-04-02 Revised:2017-05-04 Online:2017-06-15 Published:2018-08-26
  • Contact: Hongwu Wang,Changling Huang

Abstract:

Using a recombinant inbred line (RIL) population derived from the cross between Zhongdan 909’s parental lines Zheng 58 and HD568, we studied the genetic characters of plant height and ear height of maize under different environments. Analysis of phenotype data from RIL population and their parents showed that plant height and ear height had high broad sense heritability, but still significantly affected by environment factors. The joint segregation analysis of the three generations revealed that the plant height fitted the genetic model of F-2 in environment Ⅰ (Xinxiang,Henan; Summer of 2015) and genetic model of G-0 in both environments Ⅱ (Xinxiang, Henan; Summer of 2016) and Ⅲ(Gongzhuling, Jilin; Spring of 2016); Ear height fitted the genetic model of F-2 in environments Ⅰ and Ⅱ, and genetic model G-0 in environment Ⅲ. The results indicated that environment factors had a significant effect on the genetic models of these two traits. Study of the genetic laws of plant height and ear height under different environments will provide a theoretical basis for QTL mapping and breeding maize varieties with wide adaptability.

Key words: Maize, Plant height, Ear height, Genetic model

Table 1

The phenotypic analysis of parents and RIL population in three environments m"

环境
Environment
性状
Trait
亲本 Parent RIL群体RIL population
郑58 Zheng 58 HD568 均值±标准误Mean±SE 峰度Kurtosis 偏度Skewness 变异系数CV (%)
株高Plant height 1.54 1.82 1.69±0.01 -0.27 -0.07 11.93
穗位高Ear height 0.54 0.71 0.61±0.01 -0.06 0.27 18.75
株高Plant height 1.54 1.76 1.65±0.01 -0.49 -0.30 11.61
穗位高Ear height 0.50 0.65 0.57±0.01 0.11 0.32 18.90
株高Plant height 1.91 1.99 1.96±0.00 0.14 -0.08 11.14
穗位高Ear height 0.64 0.79 0.78±0.01 0.35 0.11 17.93

Table 2

The joint variance analysis of plant height and ear height of populations"

变异来源Source of variation 株高Plant height 穗位高Ear height
自由度DF 均方MS F值F value 自由度DF 均方MS F值F value
环境Environment 2 12.100330 2 123.96** 2 5.315545 2 057.54**
家系Genealogy 217 0.210972 37.03** 217 0.071884 27.82**
重复Repeat 1 0.002425 0.43 1 0.000103 0.04
环境×家系Environment×Genealogy 430 0.018232 3.20** 430 0.007909 3.06**
环境×重复Environment×Repeat 2 0.094939 16.66** 2 0.064114 24.82**
重复×家系Repeat×Genealogy 217 0.007113 1.25 217 0.002777 1.07
广义遗传力Generalized heritability (%) 91.35 88.99

Table 3

AIC of plant height in three environments"

模型代码
Model code
环境Environment 模型代码
Model code
环境Environment
A-0 2 139.916 2 191.265 2 268.605 E-5 2 078.848 2 127.724 2 205.402
A-1 2 092.312 2 146.722 2 215.780 E-6 2 078.864 2 130.288 2 207.599
B-1 2 094.458 2 147.159 2 217.372 E-7 2 076.865 2 129.057 2 206.060
B-2 2 094.010 2 148.550 2 217.758 E-8 2 076.865 2 129.057 2 206.060
B-3 2 092.010 2 146.550 2 215.758 E-9 2 076.862 2 128.281 2 205.599
B-4 2 094.287 2 148.705 2 217.776 F-1 2 093.528 2 082.453 2 152.275
B-5 2 092.474 2 145.166 2 215.372 F-2 2 061.712 2 044.444 2 083.405
B-6 2 092.458 2 145.159 2 215.372 F-3 2 082.937 2 070.834 2 140.346
B-7 2 090.480 2 143.168 2 213.372 F-4 2 093.802 2 148.443 2 217.753
B-8 2 092.454 2 146.803 2 215.794 G-0 2 075.179 1 993.764 2 060.324
B-9 2 092.734 2 143.101 2 212.494 G-1 2 088.050 2 060.419 2 121.378
C-0 2 082.339 2 130.894 2 208.449 G-2 2 088.450 2 142.562 2 218.722
C-1 2 080.428 2 131.696 2 207.912 G-3 2 076.909 2 130.818 2 206.895
D-1 2 078.865 2 130.213 2 207.553 G-4 2 088.478 2 142.540 2 219.055
D-2 2 076.908 2 130.836 2 206.897 H-1 2 094.535 2 120.893 2 199.099
E-0 2 081.802 2 130.934 2 208.771 H-2 2 087.815 2 122.364 2 216.871
E-1 2 080.863 2 129.489 2 207.244 H-3 2 091.661 2 146.380 2 215.754
E-2 2 078.909 2 132.828 2 208.896 H-4 2 093.663 2 148.381 2 217.755
E-3 2 076.909 2 130.827 2 206.896 H-5 2 093.671 2 147.975 2 217.406
E-4 2 078.871 2 127.724 2 205.402

Table 4

The goodness of fit test of genetic model for plant height"

环境Environment 模型Mode 群体Population U12 U22 U32 nW2 Dn
F-2 P1 4.69(0.03) 2.45(0.12) 4.56(0.03) 0.54(<0.05) 0.93(<0.05)
P2 5.80(0.02) 2.50(0.11) 9.02(0.00) 0.65(<0.05) 0.99(<0.05)
RIL 0.61(0.44) 0(0.95) 7.56(0.01) 0.23(>0.05) 0.03(>0.05)
F-2 P1 3.34(0.07) 2.26(0.13) 1.13(0.29) 0.43(>0.05) 0.86(<0.05)
P2 2.22(0.14) 1.95(0.16) 0.03(0.86) 0.33(>0.05) 0.77(>0.05)
RIL 0.00(0.96) 0.25(0.62) 4.45(0.03) 0.13(>0.05) 0.02(>0.05)
G-0 P1 0(1) 0.05(0.82) 0.80(0.37) 0.07(>0.05) 0.36(>0.05)
P2 0(1) 0.01(0.93) 0.11(0.74) 0.05(>0.05) 0.32(>0.05)
RIL 0.25(0.62) 0.55(0.46) 1.06(0.30) 0.15(>0.05) 0.01(>0.05)
F-2 P1 0.69(0.41) 1.07(0.30) 0.85(0.36) 0.16(>0.05) 0.59(>0.05)
P2 3.40(0.07) 2.26(0.13) 1.28(0.26) 0.42(>0.05) 0.85(<0.05)
RIL 0.01(0.91) 0.26(0.61) 2.56(0.11) 0.09(>0.05) 0.00(>0.05)
G-0 P1 0(1) 0.07(0.79) 1.15(0.28) 0.07(>0.05) 0.37(>0.05)
P2 0(1) 0.00(0.98) 0.01(0.93) 0.05(>0.05) 0.30(>0.05)
RIL 0.04(0.84) 0.03(0.86) 0.01(0.94) 0.05(>0.05) 0.00(>0.05)

Table 5

AIC of ear height in three environments"

模型代码
Model code
环境Environment 模型代码
Model code
环境Envitonment
A-0 1 835.468 1 847.213 1 966.698 E-5 1 774.078 1 784.986 1 903.061
A-1 1 779.063 1 790.235 1 915.104 E-6 1 774.553 1 786.200 1 903.223
B-1 1 782.112 1 792.191 1 915.481 E-7 1 773.314 1 784.586 1 900.961
B-2 1 780.514 1 791.819 1 916.873 E-8 1 773.313 1 784.586 1 900.961
B-3 1 778.514 1 789.826 1 914.873 E-9 1 772.491 1 784.196 1 903.130
B-4 1 780.927 1 792.179 1 917.103 F-1 1 788.007 1 792.090 1 902.219
B-5 1 780.248 1 790.235 1 913.482 F-2 1 765.586 1 758.921 1 893.372
B-6 1 780.112 1 790.191 1 913.481 F-3 1 776.683 1 781.170 1 895.952
B-7 1 778.301 1 788.251 1 911.482 F-4 1 780.204 1 791.580 1 916.759
B-8 1 779.104 1 790.381 1 915.393 G-0 1 783.438 1 779.353 1 861.105
B-9 1 779.223 1 789.122 1 915.449 G-1 1 781.481 1 795.126 1 902.249
C-0 1 773.737 1 785.009 1 904.627 G-2 1 789.977 1 798.374 1 933.262
C-1 1 774.246 1 784.195 1 911.481 G-3 1 774.866 1 785.317 1 912.535
D-1 1 774.419 1 786.163 1 905.648 G-4 1 789.971 1 798.344 1 933.257
D-2 1 774.870 1 785.318 1 912.546 H-1 1 790.813 1 791.743 1 911.049
E-0 1 778.026 1 788.785 1 907.467 H-2 1 777.609 1 778.617 1 918.277
E-1 1 776.058 1 786.927 1 905.223 H-3 1 778.046 1 789.455 1 914.709
E-2 1 776.868 1 787.317 1 914.542 H-4 1 780.047 1 791.455 1 916.711
E-3 1 774.868 1 785.318 1 912.540 H-5 1 780.011 1 791.320 1 916.519
E-4 1 774.078 1 784.986 1 903.061

Table 6

The goodness of fit test of genetic model for ear height"

环境Environment 模型Mode 环境Population U12 U22 U32 nW2 Dn
F-2 P1 4.63(0.03) 2.44(0.12) 4.33(0.04) 0.54(<0.05) 0.92(<0.05)
P2 3.15(0.08) 2.12(0.15) 1.10(0.29) 0.36(>0.05) 0.78(>0.05)
RIL 0.13(0.72) 0(0.95) 1.25(0.26) 0.05(>0.05) 0(>0.05)
F-2 P1 3.73(0.05) 2.28(0.13) 2.08(0.15) 0.42(>0.05) 0.83(>0.05)
P2 4.13(0.04) 2.37(0.12) 2.95(0.09) 0.47(<0.05) 0.87(<0.05)
RIL 0.24(0.63) 0.03(0.86) 1.43(0.23) 0.15(>0.05) 0(>0.05)
F-2 P1 5.19(0.02) 2.48(0.12) 6.36(0.01) 0.59(<0.05) 0.95(<0.05)
P2 5.66(0.02) 2.50(0.11) 8.38(0.00) 0.63(<0.05) 0.98(<0.05)
RIL 0.50(0.48) 0.01(0.94) 6.06(0.01) 0.21(>0.05) 0(>0.05)
G-0 P1 0(1) 0.05(0.82) 0.80(0.37) 0.07(>0.05) 0.36(>0.05)
P2 0(1) 0.01(0.93) 0.11(0.74) 0.05(>0.05) 0.32(>0.05)
RIL 0.07(0.79) 0.10(0.75) 0.05(0.82) 0.04(>0.05) 0(>0.05)

Table 7

The estimates of genetic parameters of the plant height"

一阶参数
1st order parameter
估计值Estimate 二阶参数
2nd order parameter
估计值Estimate
m 154.89 297.89 362.17 σ2p 661.85 845.25 1 152.12
da 18.21 -20.61 -24.48 σ2mg 410.08 487.98 688.39
db -19.28 -20.58 -24.45 σ2pg - 356.09 451.52
dc -19.28 -20.60 -24.48 σ2e 251.77 1.18 12.21
iab - -20.57 -24.44 h2mg(%) 61.96 57.73 59.75
iac - -20.58 -24.44 h2pg(%) - 42.13 39.19
ibc - -20.56 -24.43

Table 8

The estimates of genetic parameters of the ear height"

一阶参数
1st order parameter
估计值Estimate 二阶参数
2nd order parameter
估计值Estimate
m 54.85 51.23 121.97 σ2p 163.14 171.72 300.10
da 7.32 6.95 -8.33 σ2mg 109.99 114.40 111.55
db -7.24 -7.45 -8.31 σ2pg - - 185.82
dc -7.24 -7.45 -8.32 σ2e 53.15 57.32 2.73
iab - - -8.30 h2mg(%) 67.42 66.62 37.17
iac - - -8.30 h2pg(%) - - 61.92
ibc - - -8.30
iabc - - -8.29
[1] Flintgarcia S A, Jampatong C, Darrah L L , et al. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science, 2003,43(1):13-22.
doi: 10.2135/cropsci2003.0013
[2] 丰光, 刘志芳, 李妍妍 , 等. 玉米茎秆耐穿刺强度的倒伏遗传研究. 作物学报, 2009,35(11):2133-2138.
doi: 10.3724/SP.J.1006.2009.02133
[3] 勾玲, 黄建军, 孙锐 , 等. 玉米不同耐密植品种茎秆穿刺强度的变化特征. 农业工程学报, 2010,26(11):156-162.
doi: 10.3969/j.issn.1002-6819.2010.11.028
[4] 李清超, 李永祥, 杨钊钊 , 等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位. 作物学报, 2013,39(9):1521-1529.
doi: 10.3724/SP.J.1006.2013.01521
[5] 刘小刚, 马飞前, 王红武 , 等. 玉米茎秆穿刺强度遗传研究.作物杂志, 2014(4):27-31.
[6] 马飞前, 刘小刚, 王红武 , 等. 玉米茎秆纤维品质性状及其相关分析.作物杂志, 2014(4):44-48.
[7] Zhang Z M, Zhao M J, Ding H P , et al. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian Journal of Genetics, 2006,42(3):306-310.
doi: 10.1134/S1022795406030112
[8] Mdela L, Cldejr S, Dav B , et al. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular Breeding, 2006,17(3):227-239.
doi: 10.1007/s11032-005-5679-4
[9] Bai W, Zhang H, Zhang Z , et al. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breeding, 2010,129(4):376-384.
[10] Salvi S, Corneti S, Bellotti M , et al. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 2011,11:4.
doi: 10.1186/1471-2229-11-4 pmid: 21211047
[11] 王铁固, 马娟, 张怀胜 , 等. 玉米穗位高的主基因+多基因的遗传模型分析. 贵州农业科学, 2012,40(4):10-13.
[12] 王铁固, 马娟, 张怀胜 , 等. 玉米株高主基因+多基因遗传模型分析. 玉米科学, 2012,20(4):45-49.
doi: 10.3969/j.issn.1005-0906.2012.04.010
[13] 高树仁, 刘文研, 张玉胡 . 玉米株高的遗传分析. 黑龙江八一农垦大学学报, 2010,22(6):1-3.
[14] Gai J Y, Wang J K . Identification and estimation of a QTL model and its effects. Theoretical and Applied Genetics, 1998,97(7):1162-1168.
doi: 10.1007/s001220051005
[15] 盖钧镒 . 植物数量性状遗传体系.北京: 科学出版社, 2003.
[16] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
doi: 10.7685/j.issn.1000-2030.2013.06.001
[17] 李洪戈, 余坤江, 郭婷婷 , 等. 甘蓝型油菜无花瓣性状的主基因+多基因遗传分析. 江苏农业学报, 2014,30(2):253-258.
[18] 王建康 . 基因定位与育种设计.北京: 科学出版社, 2014.
[19] 邱正高, 王贵学, 杨华 , 等. 航空诱变糯玉米突变体株高穗位高遗传模型. 西南大学学报(自然科学版), 2008,30(3):60-65.
[20] 李颖 . 高油玉米主要性状主基因+多基因遗传分析. 长春:吉林农业大学, 2011.
[21] 赵刚, 吴子恺, 王兵伟 . 微胚乳超高油玉米株高和穗位高的主基因+多基因遗传模型. 安徽农业科学, 2007,35(17):5096-5098.
doi: 10.3969/j.issn.0517-6611.2007.17.032
[1] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[2] Su Guihua, Li Chunlei, Su Yichen. Evaluation of 22 Main Popularized Varieties#br# by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[3] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[4] Li Shaokun, Zhang Wanxu, Wang Keru, Han Dongsheng, . Study on Maize Mechanical Grain#br# Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[5] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[6] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[7] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[8] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[9] Jingjing Yang,Jianglu Chen,Ruizhi Xie,Xiaowei Zhang,Bianhong Ding,Xinming Wu,Shaokun Li,Dongfang Li. Effects of Seed Weight Difference on the Evenness of Related Germination Indexes in Maize [J]. Crops, 2018, 34(3): 180-184.
[10] Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167.
[11] Lei Shi,Guohong Wang,Yanbo Wang,Dawei Wang,Haiyan Zhao. Preliminary Study on Grain Dehydration Rate of Maize Hybrids and Their Parents [J]. Crops, 2018, 34(3): 84-89.
[12] Keru Wang,Shaokun Li,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Lulu Li,Ruizhi Xie,Peng Hou,Bo Ming. Screening Maize Varieties Suitable for Mechanical Harvesting Grain in the Central Liaoning Province [J]. Crops, 2018, 34(3): 97-102.
[13] Lulu Li,Ruizhi Xie,Keru Wang,Bo Ming,Peng Hou,Shaokun Li. Effects of Peeling Husk on Grain Dehydration of Maize [J]. Crops, 2018, 34(2): 114-117.
[14] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
[15] Zhongnan Li,Yueren Wang,Shenghui Wu,Haitao Qu,Zhengxue Xu,Guangfa Li. Factor Analysis on GCA Effect Value of Main Traits of Maize [J]. Crops, 2018, 34(2): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .