Crops ›› 2017, Vol. 33 ›› Issue (5): 112-118.doi: 10.16035/j.issn.1001-7283.2017.05.019

Previous Articles     Next Articles

Effects of Cytokinins Used at Panicle Differentiation Stage on Panicle Traits and Plant Type Traits of Rice

Gong Yanlong1,2,Lei Yue1,Xia Yuanye2,Du Zhimin2,Xu Hai2   

  1. 1Guizhou Rice Institute,Guiyang 550006,Guizhou,China
    2Institute of Rice Research,Shenyang Agricultural University/Key Laboratory of Northeast Rice Biology and Genetic Breeding,Ministry of Agriculture/Key Laboratory of Northern Japonica Super Rice Breeding,Ministry of Education/Key Laboratory of Northern Japonica Genetics and Breeding of Liaoning Province,Shenyang 110866,Liaoning,China
  • Received:2017-04-05 Revised:2017-07-19 Online:2017-10-15 Published:2018-08-26
  • Contact: Hai Xu

Abstract:

Six rice cultivars of indica and japonica were used as test materials to study the effects of spraying cytokinin with lower, medium and high concentrations on the panicle traits of rice during panicle differentiation stages, which including bract differentiation stage (T1), branch differentiation stage (T2), spikelet primordium differentiation stage (T3), pollen mother cell formation and meiosis stage (T4), pollen filling stage (T5). Panicle traits of indica and japonica rice in response to exogenous hormone were investigated to determine the optimal spraying stages and concentrations of hormone for regulating panicle traits and rice plant types. The terminal goal was to provide a theoretical basis and reference for the application of hormone production by way of regulation of rice panicle traits and plant type traits. The results were showed as follows: Panicle length and seed setting rate of secondary branch and seed setting rate were extremely significantly higher than that of control, but the differences between different other concentrations of CTK were not significant. Grain number with low concentrations used were higher than that of control, but those under other treatments was not significantly different. Grains weight and grains density fell significantly after applying CTK and flag leaf angle, top second leaf angle, top third leaf angle, top third internode length , flag leaf length, top second leaf width and top third leaf width were extremely significantly higher than that of control. After spraying CTK at different periods of panicle differentiation, the effects of promoting panicle length were bract differentiation stage (T1) extremely significantly higher than that at other stages. The effects of promoting grain number were T1>T5>T4>T2>T3. The effect of promoting panicle seed setting rate were more obvious at pollen mother cell formation and meiosis stage (T4), the more obvious the effect of grains density decreased was at spikelet primordium differentiation stage (T3). There was interaction effect between the spraying periods and concentrations. We made sure the best combination of spraying periods and concentrations aimed at regulating effect of different panicle traits.

Key words: Rice, Cytokinin, Panicle traits, Plant type traits, Panicle differentiation

Table 1

Spraying date of CTK"

品种Variety T1 T2 T3 T4 T5
秋田小町Akitakaomaqi 7/05 7/09 7/17 7/24 8/03
沈农265 Shennong 265 7/04 7/09 7/17 7/23 8/03
中优早8 Zhongyouzao 8 7/03 7/08 7/15 7/22 8/01
丰锦Toyonishiki 7/08 7/13 7/21 7/28 8/06
七山占Qishanzhan 7/03 7/08 7/16 7/22 8/02
沈农1403 Shennong 1403 7/10 7/14 7/21 7/28 8/08

Table 2

Effect of CTK different concentrations on panicle traits"

性状Traits 对照CK C1 C2 C3
穗长PL (cm) 18.28bB 19.71aA 19.77aA 19.81aA
一次枝梗数NPB (个) 12.82aB 12.99aAB 13.06aA 13.00aAB
二次枝梗数NSB (个) 28.15abA 28.41aA 27.69bA 27.87abA
穗粒数GPP (粒) 166.93bA 168.79aA 166.95bA 167.08bA
一次枝梗结实率PBSSR (%) 0.93aA 0.93aA 0.93aA 0.93aA
二次枝梗结实率SBSSR (%) 0.85bB 0.89aA 0.89aA 0.88aA
穗结实率SSR (%) 0.89bB 0.91aA 0.91aA 0.91aA
一次枝梗千粒重PBTGW (g) 25.57aA 25.12cB 25.32bB 25.21bcB
二次枝梗千粒重SBTGW (g) 23.10aA 22.67bB 22.66bB 22.63bB
总体千粒重TGW (g) 24.56aA 23.95bB 24.10bB 24.06bB
着粒密度GD (粒/10cm) 91.95aA 87.69bAB 84.03cB 84.59cB

Table 3

Effect of CTK treated at different stages on panicle traits"

性状Traits T1 T2 T3 T4 T5
穗长PL (cm) 19.65aA 19.27bB 19.33bB 19.36bB 19.36bB
一次枝梗数NPB (个) 12.90bcAB 12.84cB 12.96abcAB 13.11aA 13.04abAB
二次枝梗数NSB (个) 29.83aA 26.81dC 26.51dC 28.03cB 28.98bA
穗粒数GPP (粒) 176.05aA 162.64cC 160.37cC 167.46bB 169.42bB
一次枝梗结实率PBSSR (%) 0.93bB 0.92bB 0.93bB 0.94aA 0.93bB
二次枝梗结实率SBSSR (%) 0.86bC 0.87bBC 0.89aAB 0.90aA 0.87bBC
穗结实率SSR (%) 0.89cC 0.90cBC 0.91abAB 0.92aA 0.90bcBC
一次枝梗千粒重PBTGW (g) 25.42aA 25.40aA 24.96bB 25.32aA 25.43aA
二次枝梗千粒重SBTGW (g) 22.97aA 22.82abA 22.42cB 22.95aA 22.64bcAB
总体千粒重TGW (g) 24.24aA 24.21aA 23.83bB 24.20aA 24.11aA
着粒密度GD (粒/10cm) 89.91aA 84.51cC 83.35cC 89.75aA 87.83bB

Table 4

Optimal spraying stages and concentrations of CTK for regulating panicle length"

处理
Treatment
穗长
Panicle
length
5%显著水平
5% significant
level
1%极显著水平
1% extremely significant level
处理
Treatment
穗长
Panicle
length
5%显著水平
5% significant
level
1%极显著水平
1% extremely significant level
C3T4 20.15 a A C1T3 19.64 cde ABCD
C1T1 20.10 ab AB C3T2 19.63 cde BCD
C2T1 19.96 abc ABC C1T5 19.52 de CD
C1T2 19.92 abc ABCD C2T2 19.47 e CD
C3T1 19.89 abcd ABCD C1T4 19.40 e D
C2T5 19.87 abcd ABCD CKT1 18.47 f E
C2T4 19.79 abcde ABCD CKT5 18.38 f E
C2T3 19.79 abcde ABCD CKT4 18.30 f E
C3T3 19.71 bcde ABCD CKT3 18.19 f E
C3T5 19.69 cde ABCD CKT2 18.17 f E

Table 5

Optimal spraying stages and concentrations of CTK for regulating panicle traits"

性状
Traits
调控方向
Regulation
direction
施用时期和浓度最佳组合
Optimal combination of spraying stages and concentrations
穗长PL 促进Increase T4C3
一次枝梗数NPB 促进Increase T1C1
二次枝梗数NSB 促进Increase T1C1
穗粒数GPP 促进Increase T1C1
一次枝梗结实率PBSSR 促进Increase T4C3
二次枝梗结实率SBSSR 促进Increase T4C3
穗结实率SSR 促进Increase T4C3
一次枝梗千粒重PBTGW 降低Decrease T3C1
二次枝梗千粒重SBTGW 降低Decrease T5C1
总体千粒重TGW 降低Decrease T3C1
着粒密度GD 降低Decrease T2C2

Table 6

Effect of CTK with different concentrations on plant traits"

性状Traits 对照CK C1 C2 C3
颈穗弯曲度PC (°) 63.33aA 61.00bA 61.68bA 60.78bA
剑叶基角FLA (°) 19.28bB 24.76aA 23.87aA 24.73aA
倒二叶基角TLA2 (°) 15.70bB 20.60aA 19.43aA 19.24aA
倒三叶基角TLA3 (°) 16.02bB 18.78aA 17.66aA 17.84aA
剑叶长FLL (cm) 26.40cB 27.30bAB 28.18aA 26.93bcB
倒二叶长TLL2 (cm) 34.00cC 35.79bB 37.05aA 35.77bB
倒三叶长TLL3 (cm) 36.92cC 39.36aAB 39.83aA 38.57bB
剑叶宽FLW (cm) 1.51cC 1.55bAB 1.58aA 1.53bB
倒二叶宽TLW2 (cm) 1.27aA 1.27aA 1.28aA 1.28aA
倒三叶宽TLW3 (cm) 1.13aA 1.12aA 1.14aA 1.14aA
倒一节长TNL1 (cm) 30.82aA 30.48aA 31.00aA 30.51aA
倒二节长TNL2 (cm) 18.93bA 19.31aA 18.97abA 19.28aA
倒三节长TNL3 (cm) 15.24bB 15.61aA 15.63aA 15.66aA

Table 7

Effect of CTK treated at different stages on plant traits"

性状Traits T1 T2 T3 T4 T5
颈穗弯曲度PC (°) 60.25bB 60.35bB 62.30abAB 64.32aA 61.25bAB
剑叶基角FLA (°) 20.78bB 23.67aAB 24.42aA 23.79aAB 23.15abAB
倒二叶基角TLA2 (°) 17.40cBC 19.67abA 21.05aA 16.48cC 19.11bAB
倒三叶基角TLA3 (°) 17.30abA 18.32aA 17.65abA 17.09bA 16.75bA
剑叶长FLL (cm) 26.96aA 27.21aA 26.93aA 27.01aA 27.90aA
倒二叶长TLL2 (cm) 35.43aA 35.42aA 35.80aA 35.90aA 35.72aA
倒三叶长TLL3 (cm) 39.08aA 37.94bB 38.83aAB 38.66abAB 38.85aAB
剑叶宽FLW (cm) 1.57aA 1.53bcAB 1.50cB 1.56aA 1.55abAB
倒二叶宽TLW2 (cm) 1.31aA 1.25cB 1.26bcB 1.26bcB 1.28bB
倒三叶宽TLW3 (cm) 1.15aA 1.11cB 1.14abAB 1.12bcAB 1.14abAB
倒一节长TNL1 (cm) 30.70aA 30.44aA 30.85aA 30.87aA 30.67aA
倒二节长TNL2 (cm) 18.74bB 19.17abAB 19.01abAB 19.27aAB 19.41aA
倒三节长TNL3 (cm) 15.11dC 15.36cdBC 15.52bcABC 15.78abAB 15.92aA

Table 8

Optimal spraying stages and concentrations of CTK for regulating plant traits"

性状
Traits
调控方向
Regulation direction
施用时期和浓度最佳组合
Optimal combination of spraying
stages and concentrations
颈穗弯曲度PC 促进Increase T4C3
剑叶基角FLA 促进Increase T3C1
倒二叶基角TLA2 促进Increase T3C1
倒三叶基角TLA3 促进Increase T3C1
剑叶长FLL 促进Increase T1C2
倒二叶长TLL2 促进Increase T1C2
倒三叶长TLL3 促进Increase T1C2
剑叶宽FLW 促进Increase T1C2
倒二叶宽TLW2 促进Increase T1C2
倒三叶宽TLW3 促进Increase T1C2
倒一节长TNL1 促进Increase T1C2
倒二节长TNL2 促进Increase T5C1
倒三节长TNL3 促进Increase T5C1
[1] 陈绍栋, 杨仁崔 . 籼稻穗部性状的相关遗传力分析.福建农业大学学报, 1996(3):266-270.
[2] 徐正进, 陈温福, 孙占惠 , 等. 辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系. 中国农业科学, 2004,37(7):963-967.
doi: 10.3321/j.issn:0578-1752.2004.07.005
[3] 徐海, 朱春杰, 郭艳华 , 等. 生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系. 中国农业科学, 2009,42(5):1540-1549.
[4] 吴亚辉, 陶星星, 肖武名 , 等. 水稻穗部性状的QTL分析. 作物学报, 2014,40(2):214-221.
doi: 10.3724/SP.J.1006.2014.00214
[5] 宫彦龙, 徐海, 夏原野 , 等. 幼穗分化期喷施表油菜素内酯( epi-BR)对水稻穗部性状的影响.作物杂志, 2016(2):133-138.
doi: 10.16035/j.issn.1001-7283.2016.02.025
[6] Miller C O, Skoog F, Okomura F S , et al. Isolation,structure and synthesis of kinetin,a substance promoting cell division. Journal of the American Chemical Society, 1956,78(7):1375-1380.
doi: 10.1021/ja01588a032
[7] Kurakawa T, Ueda N, Maekawa M , et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007,445:652-655.
doi: 10.1038/nature05504 pmid: 17287810
[8] Beveridge C A, Kyozuka J . New genes in the strigolactone-related shoot branching pathway. Current Opinion in Plant Biology, 2010,13(1):34-39.
doi: 10.1016/j.pbi.2009.10.003 pmid: 19913454
[9] Leyser O . The control of shoot branching:an example of plant information processing. Plant,Cell& Environment, 2009,32(6) : 694-703.
doi: 10.1111/j.1365-3040.2009.01930.x pmid: 19143993
[10] Dun E A, Brewer P B, Beveridge C A . Strigolactones:discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009,14(7):364-372.
doi: 10.1016/j.tplants.2009.04.003 pmid: 19540149
[11] 王夏雯, 王绍华, 李刚华 , 等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008,34(12):2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
[12] 杨建昌, 仇明, 王志琴 , 等. 水稻发育胚乳中细胞增殖与细胞分裂素含量的关系. 作物学报, 2004,30(1):11-17.
[13] Werner T, Schmülling T . Cytokinin action in plant development, Current Opinion in Plant Biology, 2009,12(5):527-538.
doi: 10.1016/j.pbi.2009.07.002 pmid: 19740698
[14] 凌启鸿, 张洪程, 苏祖芳 , 等. 水稻叶龄模式.北京: 科学出版社, 1994: 69-215.
[15] 李小艳, 许晅, 朱同生 , 等. 细胞分裂素对玉米产量性状的影响.中国农学通报, 2013(36):219-223.
[16] 刘绍权, 谢晓明, 陈广超 , 等. 植物细胞分裂素提高杂交水稻结实率应用效果初报.中国农村小康科技, 2005(10):24-52.
doi: 10.3969/j.issn.1007-7774.2005.10.009
[17] Powell A F, Paleczny A R, Olechowski H , et al. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiology and Biochemistry, 2013,64(5):33-40.
doi: 10.1016/j.plaphy.2012.12.010
[18] 彭应财 . 水稻应用植物细胞分裂素的效果.作物杂志, 1996(2):29.
[19] 李国顺, 徐振平 . 细胞分裂素及稀土微肥在杂交水稻制种上的应用效果研究.种子, 1999(4):24-26.
[20] Miyawaki K, Matsumoto-Kitano M, Kakimoto T . Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis:tissue specificity and regulation by auxin,cytokinin,and nitrate. Plant Journal, 2004,37(1):128-138.
doi: 10.1046/j.1365-313X.2003.01945.x
[21] 黄静静, 王绍华, 李刚华 , 等. 6-苄基腺嘌呤对水稻颖花分化影响机制的研究. 南京农业大学学报, 2009,32(3):8-13.
[22] 赵长华, 丁艳锋 . 水稻穗粒数形成的生理生化研究进展.耕作与栽培, 2001(1):5-9.
doi: 10.3969/j.issn.1008-2239.2001.01.002
[23] 徐海, 宫彦龙, 夏原野 , 等. 中日水稻品种杂交后代株型性状的变化及其相互关系. 中国水稻科学, 2015,29(4):363-372.
doi: 10.3969/j.issn.1001-7216.2015.04.005
[1] Ji Shengdong, Li Peng, Li Jiangwei, Song Liumin, . Analysis of Peroxidase Zymogram and Genetic#br# Effects between Rice Lines and Their#br# Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli, Zheng Yun, Zhou Xiaomei, . Genetic Diversity Analysis of Red Rice from#br# Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[4] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[5] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[6] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[7] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[8] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[9] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[10] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[11] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[12] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
[13] Zhibo Zhou,Yake Yi,Guanghui Chen. Effects of Sowing Amount, Medium and Chemical Treatment on Seedling Quality and Yield of High Quality Late-Rice Variety of Yuzhenxiang [J]. Crops, 2018, 34(2): 129-135.
[14] Ge Qu,Zhengguang Chen,Xue Wang. Identification of Rice Varieties Using NIR Spectroscopy and SIMCA, PLS-DA Methods [J]. Crops, 2018, 34(2): 166-170.
[15] Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .