Crops ›› 2017, Vol. 33 ›› Issue (2): 14-22.doi: 10.16035/j.issn.1001-7283.2017.02.003

Previous Articles     Next Articles

Progress on Application of NAC Transcription Factors in Plant Abiotic Tolerance Genetic Engineering

Duan Junzhi1,Li Ying2,Zhao Mingzhong1,Li Qingzhou1,Zhang Li1,Wei Xiaochun1,Ren Yinling1   

  1. 1 Henan Academy of Agricultural Sciences,Zhengzhou 450002,Henan,China
    2 Editorial Department of Journal of Henan Agricultural University,Zhengzhou 450002,Henan,China
  • Received:2016-12-28 Revised:2017-02-28 Online:2017-04-15 Published:2018-08-26

Abstract:

In the process of growth and development, plants are subject to various abiotic stresses, which influence the growth and yield of plants. NAC transpription factors are plant-specific and one of the largest transcription factor families, which play an important role in regulation on plant growth and tolerance to abiotic stresses. This paper systematically and comprehensively elaborated the application of NAC transpription factors in plant drought, salt and cold tolerance genetic engineering from the aspects of resistance stages (reproductive stage, vegetative stage) and resistance ranges (comprehensive resistance, single resistance) of NAC transpription factors, so as to provide reference to the utilization of NAC transpription factors in genetic improvement abiotic tolerance, and molecular breeding of crops.

Key words: Plant, NAC transpription factors, Drought tolerance, Salt tolerance, Cold tolerance, Genetic engineering

[1] Nuruzzaman M, Manimekalai R, Sharoni A M , et al. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1/2):30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702
[2] Shiriga K, Sharma R, Kumar K , et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene, 2014,2:407-417.
doi: 10.1016/j.mgene.2014.05.001
[3] Shang H, Li W, Zou C , et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.:Chromosomal location,structure,phylogeny,and expression patterns. Journal of Integrative Plant Biology, 2013,55(7):663-676.
doi: 10.1111/jipb.12085
[4] Liu T K, Song X M, Duan W K , et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Molecular Biology Reporter, 2014,32(5):1041-1056
doi: 10.1007/s11105-014-0712-6
[5] Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[6] Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221
[7] Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transc ription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913
[8] Zhong R, Lee C, Ye Z H . Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 2010,3(6):1087-1103.
doi: 10.1093/mp/ssq062 pmid: 20935069
[9] Nakashima K, Takasaki H, Mizoi J , et al. NAC transcription factors in plant abiotic stress responses.Biochimica et Biophysica Acta- Gene Regulatory Mechanisma, 2012,1819(2):97-103.
doi: 10.1016/j.bbagrm.2011.10.005 pmid: 22037288
[10] Tran L S, Nishiyama R, Yamaguchi-Shinozaki K , et al. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 2010,1(1):32-39.
doi: 10.4161/gmcr
[11] Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5/6):394-402.
doi: 10.1016/j.pmpp.2010.06.005
[12] Xia N, Zhang G, Liu X Y , et al. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 2010,37(8):3703-3712.
doi: 10.1007/s11033-010-0023-4
[13] Duval M, Hsieh T F, Kim S Y , et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 2002,50(2):237-248.
doi: 10.1023/A:1016028530943 pmid: 12175016
[14] Ooka H, Satoh K , Doi K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.DNA Research,2003,10(6):239-247.
doi: 10.1093/dnares/10.6.239 pmid: 15029955
[15] Olsen A N, Ernst H A, Leggio L L , et al. NAC transcription factors:structurally distinct,functionally diverse. Trends Plant Science, 2005,10(2):79-87.
[16] Hu H, Dai M, Yao J , et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(35):12987-12992.
doi: 10.1073/pnas.0604882103
[17] Redillas M C, Jeong J S, Kim Y S , et al. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 2012,10(7):792-805.
doi: 10.1111/j.1467-7652.2012.00697.x
[18] Jeong J S, Kim Y S, Baek K H , et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010,153(1):185-197.
doi: 10.1104/pp.110.154773
[19] Jeong J S, Kim Y S, Redillas M C , et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 2013,11(1):101-114.
doi: 10.1111/pbi.12011
[20] Chen X, Wang Y, Lv B , et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant and Cell Physiology, 2014,55(3):604-619.
doi: 10.1093/pcp/pct204
[21] Fang Y, Liao K, Du H , et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 2015,66(21):6803-6817
doi: 10.1093/jxb/erv386
[22] Saad A S, Li X, Li H P, et al.A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.Plant Science , 2013, 203- 204:33-40.
[23] Liu G, Li X, Jin S , et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One, 2014,9(1):e86895.
doi: 10.1371/journal.pone.0086895
[24] An X, Liao Y, Zhang J , et al. Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regulation, 2015,76(2):211-223.
doi: 10.1007/s10725-014-9991-z
[25] Takasaki H, Maruyama K, Kidokoro S , et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010,284(3):173-183.
doi: 10.1007/s00438-010-0557-0
[26] Tran L S P, Nakashima K, Sakuma Y , et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004,16(9):2481-2498.
doi: 10.1105/tpc.104.022699
[27] Lu P L, Chen N Z, An R , et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology, 2007,63(2):289-305.
[28] Wu Y, Deng Z, Lai J , et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 2009,19(11):1279-1290.
doi: 10.1038/cr.2009.108 pmid: 19752887
[29] Xu Z Y, Kim S Y , Hyeon do Y,et al.The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell, 2013,25(11):4708-4724.
doi: 10.1105/tpc.113.119099
[30] Gao F, Xiong A, Peng R , et al. OsNAC52,a rice NAC transcription factor,potentially responds to ABA and confers drought tolerance in transgenic plants.Plant Cell, Tissue and Organ Culture, 2010,100(3):255-262.
doi: 10.1007/s11240-009-9640-9
[31] Lu M, Ying S, Zhang D F , et al. A maize stress-responsive NAC transcription factor,ZmSNAC1,confers enhanced tolerance to dehydrationin transgenic Arabidopsis. Plant Cell Reports, 2012,31(9):1701-1711.
doi: 10.1007/s00299-012-1284-2
[32] Mao H, Yu L, Han R , et al. ZmNAC55,a maize stress-responsive NAC transcription factor,confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2016,105:55-66.
doi: 10.1016/j.plaphy.2016.04.018
[33] Mao H, Wang H, Liu S , et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015,6:8326.
doi: 10.1038/ncomms9326 pmid: 4595727
[34] Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013
[35] Pandurangaiah M, Lokanadha R G, Sudhakarbabu O , et al. Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional
36 factor (MuNAC4) in groundnut confers enhanced drought tolerance. Molecular Biotechnology, 2014,56(8):758-769.
[36] Tang Y M, Liu M Y, Gao S Q , et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiologia Plantarum, 2012,114(3):210-224.
[37] Liu X, Liu S, Wu J , et al. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiology and Biochemistry, 2013,70:354-359.
doi: 10.1016/j.plaphy.2013.05.018
[38] Lu M, Zhang D F, Shi Y S , et al. Expression of SbSNAC1,a NAC transcription factor from sorghum,confers drought tolerance to transgenic Arabidopsis.Plant Cell, Tissue and Organ Culture, 2013,115:443-455.
doi: 10.1007/s11240-013-0375-2
[39] Yu X, Peng H, Liu Y , et al. CarNAC2,a novel NAC transcription factor in chickpea (Cicer arietinum L.),is associated with drought-response and various developmental processes in transgenic Arabidopsis. Journal of Plant Biology, 2014,57(1):55-66.
doi: 10.1007/s12374-013-0457-z
[40] Yu X, Liu Y, Wang S , et al. A chickpea stress-responsive NAC transcription factor,CarNAC5,confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regulation, 2016,79(2):187-197.
doi: 10.1007/s10725-015-0124-0
[41] Dai F, Zhang C, Jiang X , et al. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rosepetals. Plant Physiology, 2012,160(4):2064-2082.
doi: 10.1104/pp.112.207720
[42] Jiang X, Zhang C, Lü P , et al. RhNAC3,a stress-associated NAC transcription factor,has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnology Journal, 2014,12(1):38-48.
doi: 10.1111/pbi.12114
[43] Yokotani N, Ichikawa T, Kondou Y , et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 2009,229(5):1065-1075.
doi: 10.1007/s00425-009-0895-5
[44] Sakuraba Y, Piao W, Lim J H , et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant and Cell Physiology, 2015,56(12):2325-2339.
doi: 10.1093/pcp/pcv144 pmid: 26443376
[45] Park J, Kim Y S, Kim S G , et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiology, 2011,156(2):537-549.
doi: 10.1104/pp.111.177071
[46] Zhong H, Guo Q Q, Chen L , et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Report, 2012,31(11):1991-2003.
doi: 10.1007/s00299-012-1311-3
[47] Liu Q L, Xu K D, Zhao L J , et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters, 2011,33(10):2073-2082.
doi: 10.1007/s10529-011-0659-8
[48] Wang J Y, Wang J P, He Y . A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana . Gene, 2013,521(2):265-273.
doi: 10.1016/j.gene.2013.03.068
[49] Han X, Feng Z, Xing D , et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biology, 2015,15:208.
doi: 10.1186/s12870-015-0591-5
[50] Yoo S Y, Kim Y, Kim S Y , et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One, 2007,2(7):e642.
doi: 10.1371/journal.pone.0000642 pmid: 1920552
[51] Ma N N, Zuo Y Q, Liang X Q , et al. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum, 2013,149(4):474-486.
doi: 10.1111/ppl.2013.149.issue-4
[52] Qu Y, Duan M, Zhang Z , et al. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,129:67-76.
doi: 10.1016/j.envexpbot.2015.12.012
[53] Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S . Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signaling & Behavior, 2012,7(12):1518-1521.
[54] Guan Q, Yue X, Zeng H , et al. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress responsive gene regulation and thermo tolerance in Arabidopsis. The Plant Cell, 2014,26(1):438-453.
doi: 10.1105/tpc.113.118927
[55] Yabuta Y, Osada R, Morishita T , et al. Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. Plant Science, 2011,181(4):421-427.
doi: 10.1016/j.plantsci.2011.07.001
[56] Ochiai K, Shimizu A, Okumoto Y , et al. Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiology, 2011,156(3):1457-1463.
doi: 10.1104/pp.110.171470 pmid: 21543724
[57] Nakashima K, Tran L S, Van Nguyen D , et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007,51(4):617-630.
doi: 10.1111/j.1365-313X.2007.03168.x
[58] Zheng X, Chen B, Lu G , et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 2009,379(4):985-989.
doi: 10.1016/j.bbrc.2008.12.163 pmid: 19135985
[59] Hong Y, Zhang H, Huang L , et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 2016,7:4.
[60] Huang Q, Wang Y, Li B , et al. TaNAC29,a NAC transcription factor from wheat,enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 2015,15:268.
doi: 10.1186/s12870-015-0644-9
[61] Zhu M, Chen G, Zhang J , et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014,33(11):1851-1863.
doi: 10.1007/s00299-014-1662-z
[62] Wang G, Zhang S, Ma X , et al. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016,158(1):45-64.
doi: 10.1111/ppl.2016.158.issue-1
[63] Liu X, Hong L, Li X Y , et al. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Bioscience Biotechnology and Biochemistry, 2011,75(3):443-450.
doi: 10.1271/bbb.100614
[64] Ramegowda V, Senthil-Kumar M, Nataraja K N , et al. Expression of a finger millet transcription factor,EcNAC1,in tobacco confers abiotic stress-tolerance. PLoS One, 2012,7(7):e40397.
doi: 10.1371/journal.pone.0040397
[65] Movahedi A, Zhang J, Yin T , et al. Functional analysis of two orthologous NAC genes,CarNAC3,and CarNAC6 from Cicer arietinum,involved in abiotic stresses in poplar. Plant Molecular Biology Reporter, 2015,33:1539-1551.
doi: 10.1007/s11105-015-0855-0
[66] Yu X, Liu Y, Wang S , et al. CarNAC4,a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 2016,35(3):613-627.
doi: 10.1007/s00299-015-1907-5
[67] Yang X, Wang X, Ji L , et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Reports, 2015,34(6):943-958.
doi: 10.1007/s00299-015-1756-2
[68] Zhao X, Yang X, Pei S , et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene, 2016,586(1):158-169.
doi: 10.1016/j.gene.2016.04.028
[69] Hu H, You J, Fang Y , et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008,67(1/2):169-181.
doi: 10.1007/s11103-010-9598-3 pmid: 18273684
[70] Mao X G, Zhang H Y, Qian X Y , et al. TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012,63(8):2933-2946.
doi: 10.1093/jxb/err462
[71] Li X L, Yang X, Hu Y X , et al. A novel NAC transcription factor from Suaeda liaotungensis K.enhanced transgenic Arabidopsis drought,salt,and cold stress tolerance. Plant Cell Reports, 2014,33(5):767-778.
doi: 10.1007/s00299-014-1602-y
[72] Jin H, Huang F, Cheng H , et al. Overexpression of the GmNAC2 gene,an NAC transcription factor,reduces abiotic stress tolerance in tobacco. Plant Molecular Biology Reporter, 2013,31(2):435-442.
doi: 10.1007/s11105-012-0514-7
[1] Zhang Xiangyu, Li Hai, Liang Haiyan, . Effects of Different Row Spacing and Planting Density#br# on the Growth Characteristics and Yield of Millet [J]. Crops, 2018, 34(5): 91-96.
[2] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[3] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
[4] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7.
[5] Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167.
[6] Chendan Liu,Zeyan Zhang,Yaowen Zhang. Identification of Drought Tolerance in Bud Stage of Different Genotypes of Mung Bean [J]. Crops, 2018, 34(3): 77-83.
[7] Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122.
[8] Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147.
[9] Mingming Yan,Qiujun Chen,Min Tang,Zhiwen Liu. Effects of Different Concentration Combinations of Hormone and Organics on Rapid Propagation of Sweet Potato Virus-Free Seedling [J]. Crops, 2018, 34(2): 68-72.
[10] Junshuai Lu,Yunxiang Li,Xingfu Wang,Guohua Gao,Xia Yang,Jing Liang. Effects of High-Density on Agronomic Traits and Yield of Maize Varieties in Yellow River Irrigation Areas of Gansu Province [J]. Crops, 2018, 34(2): 97-102.
[11] Ruixin Zhang,Tianbao Ren,Zhe Zhao,Gang Wen,Mingqin Zhao. Effects of Transplanting Date on Quality and Main Economic Characters of Cigar in Five Fingers Group [J]. Crops, 2018, 34(2): 148-153.
[12] Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat [J]. Crops, 2018, 34(1): 133-140.
[13] Weijiao Xiong,Yalun Wang,Shaochang Yao,Chunliu Pan,Dong Xiao,Aiqin Wang,Longfei He. Progress in Studying Mechanism of microRNA in Stress Response in Higher Plants [J]. Crops, 2018, 34(1): 1-8.
[14] Shaokun Li,Keru Wang,Xiaoxia Yang,Dongsheng Han,Yuhua Wang,Ruizhi Xie,Peng Hou,Bo Ming. Technology and Benefit Analysis of High Yield Record Field in Maize [J]. Crops, 2017, 33(6): 1-6.
[15] Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .