Crops ›› 2020, Vol. 36 ›› Issue (2): 119-124.doi: 10.16035/j.issn.1001-7283.2020.02.018

Previous Articles     Next Articles

The Research of Starch and β-Glucan Accumulating Characteristics in Grain of Different Barley Varieties

Wang Lei1,Wang Yue2,Yan Zongshan1,Li Runxi1,Xie Zhongqing1,Zhang Ziqiang1,Zhang Xiangping1()   

  1. 1 Gansu Academy of Agri-Engineering Technology, Wuwei 733006, Gansu, China
    2 Fuyang Agricultural Technology Promotion Center, Fuyang 236000, Anhui, China
  • Received:2019-10-17 Revised:2019-11-11 Online:2020-04-15 Published:2020-04-13
  • Contact: Xiangping Zhang E-mail:13893537823@163.com

Abstract:

To investigate amylose, amylopectin and β-glucan accumulating characteristics and the correlation of starch components with β-glucan, the contents of starch components and β-glucan of barley grain 7, 14, 21, 28 days after anthesis in four barley cultivars were investigated. The results showed that the content of starch components increased gradually during grain filling and reached maximum at maturity in Ganpi 6. The accumulation dynamics of starch components increased firstly then decreased and the contents of starch components in Gankenpi 7 and Ganken 6 were maximum 21 days after anthesis. Amylose content in waxy barley (C 2-1) was significantly lower than in non-waxy barley varieties, meanwhile, amylopectin content was significantly higher than others which initially increased and then decreased. The content of β-glucan increased gradually during grain filling period and reached maximum at maturity stage the content of β-glucan in waxy barley was significantly higher than in non-waxy barley varieties. Correlation analysis indicated that the amylose/amylopectin ratio was significant correlation with β-glucan content, the amylose/amylopectin ratio can be used as an index for breeding higher β-glucan barley varieties. Logistic equation fitting found that the final accumulation of amylose and β-glucan were mainly depended on accumulation potential and effective accumulation period. The accumulations of amylopectin were resulted from the highest accumulation rate and mean accumulation rate.

Key words: Barley, Amylose, Amylopectin, β-glucan, Accumulating characteristics of starch and β-glucan

Fig.1

Changes of starch components and β-glucan contents in barley grain Error bars represent standard error of mean; different letters indicate significant difference at 0.05 level among different varieties, the same below"

Fig.2

Changes of starch components and beta-glucan accumulations in barley grain"

Table 1

Correlation analysis of contents and accumulations of barley grain starch components and β-glucan"

参数
Characteristic
直链淀粉含量
Amylose content
支链淀粉含量
Amylopectin content
直链淀粉积累量
Amylose accumulation
支链淀粉积累量
Amylopectin accumulation
直链淀粉/支链淀粉
Amylose/amylopectin ratio
β-葡聚糖含量
Beta-glucan content
-0.99** 0.94 -0.99* 0.28 -0.99**
β-葡聚糖积累量
Beta-glucan accumulation
-0.71 0.79 -0.54 0.86 \

Table 2

The parameters of logistic equation of amylose, amylopectin and β-glucan accumulation in barley grain"

指标Index 品种(系) Cultivar (Line) R2 C0 (mg) T99 R (mg/d) Tmax (d) Rmax (mg/d) T1 (d) T2 (d) T3 (d) R1 (mg/d) R2 (mg/d) R3 (mg/d)
直链淀粉 GP 6 0.990 0.16 30.00 0.28 13.91 0.62 9.29 9.24 11.50 0.19 0.54 0.15
Amylose GKP 7 0.990 0.01 23.80 0.33 14.16 0.97 11.4 5.51 6.86 0.15 0.85 0.24
GK 6 0.980 0.03 20.30 0.29 10.92 0.74 8.22 5.39 6.70 0.15 0.64 0.18
支链淀粉 GP 6 0.990 0.04 22.80 0.84 13.09 2.29 10.33 4.87 6.90 0.25 2.28 0.56
Amylopectin GKP 7 0.999 0.02 23.10 0.78 13.90 2.26 11.26 3.12 6.58 0.23 3.37 0.56
GK 6 0.984 0.08 22.70 0.68 12.10 1.68 9.05 3.21 7.59 0.22 2.79 0.41
C 2-1 1.000 0.06 21.70 0.92 12.04 2.38 9.27 6.57 6.90 0.28 1.76 0.59
β-葡聚糖 GP 6 0.990 0.01 27.20 0.09 14.91 0.76 11.40 7.02 8.74 0.05 0.19 0.06
Beta-glucan GKP 7 0.990 0.02 32.60 0.07 16.77 0.73 12.25 9.05 11.27 0.04 0.16 0.05
GK 6 0.990 0.01 26.20 0.06 14.72 0.74 10.87 7.70 9.58 0.04 0.16 0.04
C 2-1 0.970 0.06 35.90 0.08 16.52 0.66 10.96 11.11 13.83 0.06 0.15 0.04
[1] 扬乌尔里希 . 大麦生产、改良与利用. 杭州:浙江大学出版社, 2012: 545.
[2] 乔海龙, 杨启东, 陈健 , 等. 大麦β-葡聚糖的研究现状与展望. 江苏农业科学, 2012,40(1):4-7.
[3] Dong X, Zhang D, Liu J , et al. Plastidial disproportionating enzyme participates in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Plant Physiology, 2015,169(4):2496-2512.
[4] Francesca S, Giuseppe F, Ermelinda B , et al. New starch phenotypes produced by TILLING in barley. PLoS ONE, 2014,9(10):e107779.
[5] Bhatty R S, Rossnagel B G . Zero amylose lines of hull-less barley. Cereal Chemistry, 1997,74(2):190-191.
[6] 杨智敏, 孔德媛, 杨晓云 , 等. 青稞籽粒淀粉含量的差异. 麦类作物学报, 2013,33(6):1139-1143.
[7] 李俏, 潘志芬, 刘娟 , 等. 糯青稞的品质形成机理与应用优势研究. 大麦与谷类科学, 2018,35(4):64.
[8] 王恒良 . 西藏青稞资源利用评价及其青稞提取物β-葡聚糖的生理功效研究. 拉萨:西藏大学, 2008.
[9] 白沙沙, 赵萌, 于佳立 , 等. 不同品种小麦籽粒中β-葡聚糖含量的比较研究. 中国食物与营养, 2016,22(12):69-72.
[10] Shu X L, Rasmussen S K . Quantification of amylose,amylopectin,and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Frontiers in Plant Science, 2014,5:197.
[11] 陈晓静, 陈和, 陈健 , 等. 功能型大麦-糯性裸大麦开发前景探讨. 河北农业科学, 2011,15(6):82-84.
[12] Asare E K, Jaiswal S, Maley J , et al. Barley grain constituents,starch composition,and structure affect starch in vitro enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 2011,59(9):4743-4754.
[13] 曹颖妮, 胡卫国, 王根平 , 等. 糯性和非糯性小麦积累期胚乳直/支链淀粉积累及其相关酶活性研究. 西北植物学报, 2010(10):1995-2001.
[14] 谢宏, 李丹丹, 原蓼蓼 , 等. 用Logistic方程模拟稻米淀粉组分的积累特性. 粮食与饲料工业, 2012(9):9-12.
[15] 郭连安, 胡运高, 杨国涛 , 等. 不同直链淀粉含量水稻籽粒淀粉积累及其相关酶的活性变化研究. 云南大学学报(自然科学版), 2014,36(6):942-949.
[16] 郑许光, 齐军仓, 王凤 , 等. 青稞籽粒灌浆期淀粉代谢酶活性与淀粉积累特征的关系研究. 种子, 2018,37(2):19-24.
[17] 赵彩云, 亓相媛, 谷方红 . 不同产区青稞中β-葡聚糖含量的分析. 酿酒科技, 2016(10):65-66.
[18] 李明泽 . 不同加工方式对青稞中β-葡聚糖含量及其生理功效的影响. 重庆:西南大学, 2013.
[19] 赵世杰, 史国安, 董新纯 . 植物生理学实验指导. 北京:中国农业科学技术出版社, 2002: 84-85.
[20] 吴晓丽, 汤永禄, 李朝苏 , 等. 四川盆地小麦籽粒灌浆特性研究. 中国作物学会, 2012: 410-420.
[21] 宋归华, 马东方, 王书平 , 等. 糯小麦灌浆期籽粒质量和主要营养物质动态变化. 西北农业学报, 2018,27(5):46-53.
[22] 郑许光, 齐军仓, 惠宏杉 , 等. 青稞籽粒灌浆期淀粉质量分数的动态变化. 西北农业学报, 2016,25(12):1802-1808.
[23] 陈光华, 韩浩坤, 马洪驰 , 等. 糜子籽粒形成过程中蛋白质、淀粉积累与相关合成酶特性. 中国农业大学学报, 2019,24(7):28-36.
[24] 谭彩霞, 封超年, 郭文善 , 等. 不同类型小麦品种籽粒蔗糖含量变化与淀粉积累特征的研究. 扬州大学学报(农业与生命科学版), 2011,32(3):47-51.
[25] 胡阳阳, 卢红芳, 刘卫星 , 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018,44(4):591-600.
[26] Vetvicka V, Vetvickova J . Physiological effects of different types ofβ- glucan. Biomedical papers of the medical faculty of the university palacky,Olomouc,Czechoslovakia, 2007,151(2):225-231.
[27] 马瑞萍, 张月飞, 任顺成 , 等. 大麦的营养保健特性. 粮食科技与经济, 2016(3):70-72.
[28] 许伟利, 董伟志, 王军 , 等. 大麦籽粒营养成分及开发研究进展. 大麦与谷类科学, 2019(3):52-55.
[29] 臧慧 . 大麦籽粒β-葡聚糖含量的积累规律. 中国农学通报, 2014,30(24):255-258.
[30] 丁位华, 冯素伟, 王丹 , 等. 不同穗型小麦籽粒灌浆、干物质积累与转运特性及其与产量的关系. 河南农业科学, 2018,47(6):13-17,97.
[31] 冯辉, 王树杰, 郜战宁 , 等. 豫南大麦子粒灌浆参数变异及与粒重的相关性. 中国种业, 2015(8):62-65.
[32] 鄢圣敏, 杨华伟, 曾玉清 , 等. 水稻籽粒直链淀粉积累与剑叶光合特性关系研究. 广东农业科学, 2015(2):7-11.
[1] Zhao Zhun,Li Jian,Song Ruijiao,Guo Yan,Ling Jiangrui,Qi Juncang. Effects of Different Planting Densities on Biomass Yield and Silage Quality of Barley [J]. Crops, 2020, 36(1): 110-116.
[2] Demuqige,Liu Zhiping,Wang Lei,Wang Jinbo,Qi Haixiang,Xu Shoujun. Effect of Nitrogen Fertilizer on Photosynthetic Characteristics of Barley during Grain Filling Stage and Its Correlation Analysis [J]. Crops, 2020, 36(1): 103-109.
[3] Zhao Zhun,Qi Juncang,Li Jian,Guo Yan,Ling Jiangrui,Li Huqing. Influence of Mowing Stages on Hay Yield and Fermentation Quality of Spring Barley [J]. Crops, 2019, 35(5): 180-185.
[4] Jin Yulong,Bai Ting,Zhu Mingxia,Liu Xiaojiao,Wang Shanshan,Zhang Zhiwei,Hu Yun,Zhang Yuhong. Comprehensive Evaluation of Quality of Nine Tibetan Barley Landlaces by Factor Analysis [J]. Crops, 2019, 35(4): 55-60.
[5] Ying Fu,Yinan Shen,Yanchun Liu,Xiaojiao Chai,Xianrui Wang,Xiaolei Bai,Shutian Li. Correlation Analysis of Amylopectin Content, Nutritional Quality and Agronomic Traits in Spring Millet Varieties [J]. Crops, 2019, 35(2): 90-93.
[6] Zhu Mingxia,Bai Ting,Qiang Xiaolin,Wang Jianping,Xu Jianye,Ma Changshou,Min Kang,Tao Mingjuan,Yang Kaijun. Research of Regional Adaptability of Hull-less Barley Varieties in the Qinghai-Tibetan Plateau [J]. Crops, 2018, 34(6): 43-47.
[7] Wang Lei,Zhang Xiangping,Li Runxi,Niu Xiaoxia,Yang Shimei,Yan Zongshan,Zhang Ziqiang. Multivariate Analysis and Evaluation on Agronomic Traits and Grain Amylopectin Content of Barley [J]. Crops, 2018, 34(5): 71-76.
[8] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[9] Shujie Wang,Hui Feng,Zhanning Gao,Zhenggang Xue,Yongqian Yang,Zhengmao Pan,Chunsheng Zhang. Effects of Nitrogen Fertilization Rate on Grain Filling and Yield of Two Barley Varieties with Different Row Type [J]. Crops, 2017, 33(4): 129-133.
[10] Weihai Hou,Jianlin Wang, ,Dan Hu. Comparison of Photosynthesis-Light Response Curve Fitting Model of Hulless Barley [J]. Crops, 2017, 33(4): 96-104.
[11] Xiaodong Chen,Bin Zhao,Changhao Ji,Bin Zhu,Rui Wang. Differences in Forage Yield and Quality of Barley and Wheat with Proper Cutting Frequency [J]. Crops, 2017, 33(3): 81-84.
[12] Ximing Xu,Xin Zhang,Lili Shi,Jing Cui,Deliang Ding,Hongyan Qu,Shouxian Gu,Yongjie Li. Evaluation of Rice Quality with Low Amylose Content in Hybrid Japonica Rice Combinations [J]. Crops, 2016, 32(6): 44-48.
[13] Feng Wang,Juncang Qi,Lihao Lin,Xuguang Zheng,Yanan Guo,Lei Gong,Shaoyu Wang,Along Chen,Zhonghao Li,Ruijiao Song. Effects of Artificial Aging on Endogenous Hormones in the Endosperm of Barley Seeds during Early Germination [J]. Crops, 2016, 32(6): 160-167.
[14] Zhendong Liu,Bo Wang,Bei Xue,Qiangfeng Wang,Lei Hou. High Throughput Analysis of the Endophytic Bacterial Community Structure in Roots and Rhizosphere of Highland Barley of Tibetan Plateau [J]. Crops, 2016, 32(6): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .