Crops ›› 2022, Vol. 38 ›› Issue (6): 124-131.doi: 10.16035/j.issn.1001-7283.2022.06.018

Previous Articles     Next Articles

Physiological Mechanism of Nitrate Mitigation of Ammonium Toxicity in Rape

Wang Xueru(), Chen Haifei, Zhang Zhenhua()   

  1. College of Resource and Environment, Hunan Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2021-10-24 Revised:2021-11-29 Online:2022-12-15 Published:2022-12-21
  • Contact: Zhang Zhenhua E-mail:hunaustuwxr@163.com;zhzh1468@163.com

Abstract:

In order to explore the effects of nitrate nutrition on ammonium nitrogen utilization and growth of rape (Brassica napus L.), the biomass and chlorophyll concentration of rape cultured for 15 days under different nitrogen forms were measured by using Bn60 as experimental material and pure nitrate culture as control. Under the condition of 5mmol/L NH4+, five different NO3- concentrations (0.0, 0.1, 0.3, 0.6 and 1.0mmol/L) were added. After seven days of treatment, the concentration of NH4+ and the activity of nitrogen assimilation enzyme were measured. After 15 days of treatment, the concentration of biomass, total nitrogen and cation groups were measured. The results showed that compared with nitrate nitrogen, single ammonium nitrogen led to growth inhibition and yellow leaves, but with the increase of nitrate concentration, the symptoms of ammonium toxicity gradually relieved, and the shoot and root biomass, total nitrogen and nitrogen accumulation increased significantly. Increased nitrate feeding increased glutamine synthase (GS) activity in rape shoots, which led to a decrease in free ammonium ion concentration. Furthermore, as nitrate nitrogen levels rose, the concentrations of cations such as K+, Ca2+, and Mg2+ rose as well. Nitrate could increase the activity of nitrogen absorbing enzymes, decrease ammonium ion concentrations, increase the contents of Mg2+ and other cations, as well as photosynthesis, mitigate ammonium toxicity and improve rape growth.

Key words: Rape, Ammonium toxicity, Ammonium nitrogen, Nitrate nitrogen, Physiological mechanism

Fig.1

Effects of ammonium poisoning on rape growth and chlorophyll content Phenotype (a), leaf phenotype (b), biomass (c) and chlorophyll content (d) of rape under normal culture (CK) and ammonium toxicity (5mmol/L NH4+). Data represent means ± SE (n=3). “**”indicates significant difference at P < 0.01 level"

Fig.2

Effects of exogenous nitrate on growth and photosynthesis of rape Data represent means±SE (n=3). Bars with the different letters indicate significant difference at P < 0.05 level, the same below"

Fig.3

Effects of exogenous nitrate nitrogen addition on cationic content in rape"

Fig.4

Effects of exogenous nitrate addition on nitrogen assimilation ability of rape"

Fig.5

Effects of exogenous nitrate addition on total nitrogen content in rape"

[1] Lu Y L, Xu Y C, Shen Q R, et al. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant and Soil, 2009, 315(1/2):67-77.
doi: 10.1007/s11104-008-9733-y
[2] Rubio-Asensio J S, Bloom A J. Inorganic nitrogen form:a major player in wheat and arabidopsis responses to elevated CO2. Journal of Experimental Botany, 2017, 68(10):2611-2625.
doi: 10.1093/jxb/erw465 pmid: 28011716
[3] Ruan J, Gerendás J, Härdter R, et al. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Annals of Botany, 2007, 99(2):301-310.
pmid: 17204540
[4] Yang S, Hao D, Song Z, et al. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene, 2015, 555(2):305-317.
doi: 10.1016/j.gene.2014.11.021
[5] Hirel B, Le Gouis J, Ney B, et al. The challenge of improving nitrogen use efficiency in crop plants:towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 2007, 58(9):2369-2387.
doi: 10.1093/jxb/erm097
[6] Bittsánszky A, Pilinszky K, Gyulai G, et al. Overcoming ammonium toxicity. Plant Science, 2015, 231:184-190.
doi: 10.1016/j.plantsci.2014.12.005 pmid: 25576003
[7] Speer M, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. II. Inter- and intracellular solute compartmentation in leaflets. Plant Cell and Environment, 1994, 17(11):1223-1231.
doi: 10.1111/j.1365-3040.1994.tb02020.x
[8] Hachiya T, Inaba J, Wakazaki M, et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communicaton, 2021, 12(1):4944.
[9] 刘强, 宋海星, 荣湘民, 等. 不同品种油菜子粒产量及氮效率差异研究. 植物营养与肥料学报, 2009, 15(4):898-903.
[10] 荣楠, 韩永亮, 荣湘民, 等. 油菜NO3-的吸收、分配及氮利用效率对低氮胁迫的响应. 植物营养与肥料学报, 2017, 23(4):1104-1111.
[11] 邹小云, 刘宝林, 宋来强, 等. 花期渍水逆境下氮素对油菜产量及氮肥利用效率的影响. 应用生态学报, 2016, 27(4):1169-1176.
doi: 10.13287/j.1001-9332.201604.021
[12] 张智, 丛日环, 鲁剑巍. 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017, 23(6):1494-1504.
[13] Zhang D, Hua Y, Wang X, et al. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE, 2014, 9(11):e112089.
[14] Han Y L, Song H X, Liao Q, et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016, 170(3):1684-1698.
doi: 10.1104/pp.15.01377
[15] Svečnjak Z, Rengel Z. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research, 2006, 97(2):221-226.
doi: 10.1016/j.fcr.2005.10.001
[16] 简少芬. NRT1.1介导拟南芥响应镉和铵胁迫的机理研究. 长沙: 湖南农业大学, 2018.
[17] Ruiz J M, Romero L. Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants. Annals of Applied Biology, 2002, 140(3):241-245.
doi: 10.1111/j.1744-7348.2002.tb00177.x
[18] Roosta H R, Schjoerring J K. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition, 2007, 30(11):1933-1951.
doi: 10.1080/01904160701629211
[19] Wang Y T, Chang Y C A. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis orchid—a review. Horttechnology, 2017, 27(2):144-149.
doi: 10.21273/HORTTECH03204-16
[20] Satoshi K, Kazuo Y, Yoshikuni S. Effects of ammonium to nitrate ratio in culture medium on growth and nutrient absorption of phalaenopsis seedlings in vitro. Environment Control in Biology, 2000, 38(4):281-284.
doi: 10.2525/ecb1963.38.281
[21] 常笑超, 刘勇, 李进宇, 等. 不同形态氮素配比对雄性毛白杨苗木生长的影响. 北京林业大学学报, 2018, 40(9):63-71.
[22] Thu Hoai N T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741
[23] Nguyen H T T, Shim I S, Kobayashi K, et al. Regulation of ammonium accumulation during salt stress in rice (Oryza sativa L.) seedlings. Plant Production Science, 2005, 8(4):397-404.
doi: 10.1626/pps.8.397
[24] 刘婷, 尚忠林. 植物对铵态氮的吸收转运调控机制研究进展. 植物生理学报, 2016, 52(6):799-809.
[25] Kiyomiya S, Nakanishi H, Uchida H, et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiology, 2001, 125(4):1743-1753.
pmid: 11299355
[26] Husted S, Hebbern C A, Mattsson M, et al. A critical experimental evaluation of methods for determination of NH4+ in plant tissue,xylem sap and apoplastic fluid. Physiologia Plantarum, 2000, 109(2):167-179.
doi: 10.1034/j.1399-3054.2000.100209.x
[27] Jian S, Liao Q, Song H, et al. NRT1.1-Related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiology, 2018, 178(4):1473-1488.
doi: 10.1104/pp.18.00410
[28] 张小翠, 刘玉梅, 白龙强, 等. 亚适宜温光环境下不同硝铵比营养液对黄瓜幼苗生长、氮吸收和代谢的影响. 应用生态学报, 2016, 27(8):2527-2534.
[29] 徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展. 植物学报, 2016, 51(2):152-166.
doi: 10.11983/CBB15077
[30] 迟荪琳, 杨芸, 徐卫红, 等. 小白菜硝酸盐含量与NO3-/NH4+及氮代谢关键酶的相关性. 食品科学, 2015, 36(23):70-77.
[31] Zhang Z, Zhou T, Liao Q, et al. Integrated physiologic,genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation. BioMed Central, 2018, 18(1):1-18.
[32] Boari F, Calabrese N, Renna M, et al. Effects of biofertilizers on gas exchange,yield and quality of some broccoli cultivars in organic farming. Acta Horticulturae, 2013, 1005:397-404.
[33] 公华锐, 骆洪义, 亓艳艳, 等. 不同硝铵比对基质栽培番茄氮素代谢关键酶及其氮素利用效率的影响. 北方园艺, 2017(24):7-16.
[34] 胡国策, 蒋家月, 田坤红, 等. 氮素形态和水平对茶树生理特性的影响. 安徽农业大学学报, 2018, 45(4):588-593.
[35] 刘赵帆. 氮素形态及配比对花椰菜产量、品质和养分吸收的影响. 兰州: 甘肃农业大学, 2013.
[36] 卢颖林. 铵硝营养影响番茄幼苗生长和氮素代谢的分子生理机制. 南京: 南京农业大学, 2009.
[37] 杨阳. 氮素形态对葡萄生长发育的影响. 泰安: 山东农业大学, 2010.
[38] Na L, Li Z, Xiangxiang M, et al. Effect of nitrate/ammonium ratios on growth,root morphology and nutrient elements uptake of watermelon (Citrullus Lanatus) seedlings. Journal of Plant Nutrition, 2014, 37(11):1859-1872.
doi: 10.1080/01904167.2014.911321
[39] Gao Y, Li Y, Yang X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress. Plant and Soil, 2010, 331:193-201.
doi: 10.1007/s11104-009-0245-1
[40] 李保海, 施卫明. 拟南芥幼苗对高NH4+响应的特征及不同生态型间的差异. 土壤学报, 2007, 44(3):508-515.
[41] 刘璐, 李强, 丁梦娇, 等. 干旱胁迫下不同氮素形态及硝铵比对烤烟苗期生理指标的影响. 扬州大学学报(农业与生命科学版), 2019, 40(5):117-122.
[42] Tabatabaei S J, Yusefi M, Hajiloo J. Effects of shading and NO3:NH4 ratio on the yield,quality and N metabolism in strawberry. Scientia Horticulturae, 2008, 116(3):264-272.
doi: 10.1016/j.scienta.2007.12.008
[43] Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7):4255-4258.
[44] 王利超, 王涵, 朴世领, 等. 铵硝氮配比对烤烟生长生理及产量和品质的影响. 西北农林科技大学学报(自然科学版), 2012, 40(12):136-144.
[45] Guo S, Zhou Y, Shen Q, et al. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth,photosynthesis,photorespiration,and water relations. Plant Biology, 2007, 9(1):21-29.
pmid: 17048140
[46] Agrawal R, Gupta S, Gupta N K, et al. Effect of sodium chloride on gas exchange,antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.). Photosynthetica, 2013, 51(1),95-101.
doi: 10.1007/s11099-013-0003-8
[1] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[2] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[3] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
[4] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[5] Xiong Tinghao, Zi Tao, Zhang Ai, Hu Yuqian, Peng Zhi, Song Haixing. Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction [J]. Crops, 2021, 37(3): 133-139.
[6] Qin Lu, Wang Jianqiang, Han Peipei, Li Yinshui, Gu Chiming, Hu Xiaojia, Xie Lihua, Liao Xing. Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency [J]. Crops, 2021, 37(3): 28-33.
[7] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[8] Zhou Jiang, Xie Yizhang, Xiang Ping'an. Emergy Analysis of Inputs and Outputs of Major Field Crop Ecosystems in Hunan Province [J]. Crops, 2021, 37(1): 175-181.
[9] Lü Weisheng, Xiao Xiaojun, Huang Tianbao, Xiao Guobin, Li Yazhen, Xiao Fuliang, Han Depeng, Zheng Wei. Application Effect of Slow-Released Formulated Fertilizer on Oilseed Rape (Brassica napus L.) under Late Sowing Rice [J]. Crops, 2020, 36(6): 143-150.
[10] Di Na, Zheng Na, Han Haijun, Wang Jing, Cui Chao, Zheng Xiqing. The Stimulatory Effect of Different Sunflower Varieties Root Exudates on Germination of Sunflower Broomrape [J]. Crops, 2020, 36(6): 197-201.
[11] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[12] Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29.
[13] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[14] Hu Yuqian,Zi Tao,Xiong Tinghao,Zhang Zhenhua,Song Haixing. Study on the Difference of Nutrient Absorption between Winter Rape Cultivars at Early Maturity and Conventional Maturity [J]. Crops, 2020, 36(1): 117-123.
[15] Liu Xiaoya,Zhang Lifeng,Zhang Jizong,Shi Wenbin,Zhang Peiyue. Adapt Ability of Brassica napus to Cold Environment in Bashang of North China [J]. Crops, 2019, 35(5): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!