Crops ›› 2023, Vol. 39 ›› Issue (5): 30-36.doi: 10.16035/j.issn.1001-7283.2023.05.005
Previous Articles Next Articles
Song Guicheng(), Yu Guihong, Zhang Peng, Ma Hongxiang
[1] |
Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003, 189(3):142-150.
doi: 10.1046/j.1439-037X.2003.00025.x |
[2] |
Wang X, Huang M, Zhou Q, et al. Physiological and proteomic mechanisms of waterlogging priming to improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016, 132(9):175-182.
doi: 10.1016/j.envexpbot.2016.09.003 |
[3] |
Yu M, Mao S, Chen G, et al. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. Journal of Integrative Agriculture, 2014, 13(1):31-39.
doi: 10.1016/S2095-3119(13)60354-8 |
[4] |
宋桂成, 史高玲, 张平平, 等. 拔节期渍水对小麦籽粒品质相关性状的影响. 核农学报, 2021, 35(1):238-244.
doi: 10.11869/j.issn.100-8551.2021.01.0238 |
[5] | 马尚宇, 王艳艳, 黄正来, 等. 渍水对小麦生长的影响及耐渍栽培技术研究进展. 麦类作物学报, 2019, 39(7):835-843. |
[6] | 佟汉文, 刘易科, 朱展望, 等. 作物耐渍鉴定与评价方法的研究进展. 作物杂志, 2015(6):10-15. |
[7] |
Poysa V W. The genetic control of low temperature, ice- encasement, and flooding tolerances by chromosomes 5A, 5B, and 5D in wheat. Cereal Research Communication, 1984, 36(3):135-141.
doi: 10.1556/CRC.36.2008.1.14 |
[8] | 曹旸, 蔡士宾. 小麦品种资源的早熟性鉴定初报. 作物品种资源, 1984(3):26-29,48. |
[9] |
Malik A I, Colmer T D, Lambers H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Functional Plant Biology, 2001, 28(11):1121-1131.
doi: 10.1071/PP01089 |
[10] |
Boru G, Ginkel M, Kronstad W E, et al. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117 (2):91-98.
doi: 10.1023/A:1003929803920 |
[11] |
Li C, Jiang D, Wollenweber B, et al. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011, 180(10):672-678.
doi: 10.1016/j.plantsci.2011.01.009 |
[12] |
Hayashi T, Yoshida T, Fujii K, et al. Maintained root length density contributes to the waterlogging tolerance in common wheat (Triticum aestivum L.). Field Crops Research, 2013, 152 (3):27-35.
doi: 10.1016/j.fcr.2013.03.020 |
[13] | Ghobadi M E, Ghobadi M, Zebarjadi A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorolgy, 2017, 61(4):635-645. |
[14] |
Wu X, Tang Y, Li C, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research, 2018, 215 (10):163-172.
doi: 10.1016/j.fcr.2017.10.016 |
[15] |
Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats. Plant and Soil, 2003, 253(1):1-34.
doi: 10.1023/A:1024573305997 |
[16] |
Pampana S, Masoni A, Arduini I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 2016, 44(4):706-716.
doi: 10.1556/0806.44.2016.026 |
[17] |
Arguello M N, Esten Mason R, Roberts T L, et al. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield compoments. Field Crops Research, 2016, 194(4):57-64.
doi: 10.1016/j.fcr.2016.04.040 |
[18] | 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响. 麦类作物学报, 2018, 38(2):239-245. |
[19] |
Raman A, Verulkar S, Mandal N, et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 2012, 5(31):31-39.
doi: 10.1186/1939-8433-5-31 |
[20] |
Rosielle A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 1981, 21(6):943-946.
doi: 10.2135/cropsci1981.0011183X002100060033x |
[21] |
Araki H, Hamada A, Hossain M, et al. Water logging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012, 137:27-36.
doi: 10.1016/j.fcr.2012.09.006 |
[22] |
Ramirez V P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99(2):127-136.
doi: 10.1023/A:1018353200015 |
[23] | Singh G, Singh M K, Tyagi B S, et al. Germplasm characterization and selection indices in bread wheat for waterlogged soils in India. Indian Journal of Agricultural Science, 2017, 87(9):1139-1148. |
[24] |
Abdolshahi R, Safarian A, Nazari M, et al. Screening drought- tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 2013, 59(17):685-704.
doi: 10.1080/03650340.2012.667080 |
[25] | 鲍晓鸣. 小麦耐湿性的鉴定时期及鉴定指标. 上海农业学报, 1997, 13(2):32-38. |
[26] |
宋桂成, 周淼平, 余桂红, 等. 小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析. 核农学报, 2022, 36(5):876-884.
doi: 10.11869/j.issn.100-8551.2022.05.0876 |
[27] | Li Q, Ding Q, Wang LX, et al. Effects of shading and waterlogging on the photosynthesis and yield performance of winter wheat in Jiangsu province, China. International Journal of Agriculture and Biology, 2019, 21(5):472-478. |
[28] |
Wu X, Tang Y, Li C, et al. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 2015, 18(3):284-294.
doi: 10.1626/pps.18.284 |
[29] | Khodarahmpour Z, Choukan R, Bihamta M R, et al. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 2011, 13(1):111-121. |
[30] | Clarke J M, DePauw R M, Townley-Smith T F. Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 1992, 32(3):7228-7232. |
[31] |
Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. I grain yield responses. Australian Journal of Agricultural Research, 1978, 29(5):897-912.
doi: 10.1071/AR9780897 |
[1] | Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123. |
[2] | Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144. |
[3] | Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218. |
[4] | Liu Shuhan, Chen Lei, Zhang Jianchao, Hu Gan, Sun Junyan, Liu Dongtao, Wang Junwei. Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line [J]. Crops, 2023, 39(5): 24-29. |
[5] | Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263. |
[6] | Ge Changbin, Qin Suyan, Qiao Jiliang, Wang Jun, Qi Shuangli, Lu Wenying, Zhang Zhenyong. Comparative Analysis of Agronomic Traits, Quality and Disease Evolution of Approved Wheat Varieties in Southern Henan and Southern Huai River in Jiangsu from 2001 to 2021 [J]. Crops, 2023, 39(5): 49-58. |
[7] | Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103. |
[8] | Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135. |
[9] | Song Xiao, Zhang Keke, Yue Ke, Huang Chenchen, Huang Shaomin, Sun Jianguo, Guo Tengfei, Guo Doudou, Zhang Shuiqing, Pei Minnan. Differences of Enzyme Activities and Bacterial Communities in Rhizosphere Soil of Wheat Varieties with Different Nitrogen Efficiency [J]. Crops, 2023, 39(4): 188-194. |
[10] | Fu Xiaoyi, Wang Hongguang, Liu Zhilian, Li Dongxiao, He Mingqi, Li Ruiqi. Effects of Water Stress on Growth of Different Wheat Varieties at Seedling Stage and Selection of Drought Resistant Varieties [J]. Crops, 2023, 39(4): 224-229. |
[11] | Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51. |
[12] | Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15. |
[13] | Li Hongsheng, Li Shaoxiang, Yang Zhonghui, Yang Jiali, Liu Kun, Xiong Shian, Li Fuqian, Guo Hui, Yang Mujun. Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids [J]. Crops, 2023, 39(4): 71-76. |
[14] | Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84. |
[15] | Li Haoran, Li Ruiqi, Li Yanming. Review of the Changes of Wheat Row Spacing Forms and the Affecting Factors in Haihe Plain [J]. Crops, 2023, 39(3): 12-19. |
|