Crops ›› 2016, Vol. 32 ›› Issue (6): 91-98.doi: 10.16035/j.issn.1001-7283.2016.06.016

;

Previous Articles     Next Articles

Analysis on Potential Productivity and Climatic Influence Factors of Spring Maize in Jilin

Chen Xiayan1,2,Wang Lianxi1,2,Ren Jingquan3,Guo Chunming3,Li Qi1,2,Li Yingying1,2   

  1. 1 Jiangsu Key Laboratory of Agricultural Meteorology,Nanjing 210044,Jiangsu,China
    2 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China;
    3 Institute of Meteorological Science of Jilin Province,Changchun 130062,Jilin,China
  • Received:2016-07-25 Revised:2016-10-17 Online:2016-12-15 Published:2018-08-26

Abstract:

To study the spatial and temporal distribution characteristics and potential productivity of spring maize in Jilin and its response to climate change, meteorological data of spring maize in Jilin growing area from 1961 to 2015 were used in order to calculate the spring maize photosynthesis potential productivity, photosynthesis-temperature potential productivity and climatic potential productivity based on dynamic statistic model. Sensitivity of potential productivity to average temperature and precipitation in every growth period was analyzed by using the sensitivity coefficients. The results revealed that spring maize photosynthesis potential productivity and photosynthesis-temperature potential productivity showed a decreasing trend from west to east and the spatial distribution of spring maize climatic potential productivity showed an “increasing-decreasing-increasing” trend from west to east. The largest climatic potential productivity was 17 266kg/hm 2 in the central region. The climatic potential productivity in the western region was 10 787kg/hm 2 and the productivity in the eastern region is 16 983kg/hm 2. The influence rates of average temperature to potential productivity in the western region, central region and eastern region respectively were 20.1%, 19.5% and 30.9%, respectively; The influence rates of precipitation to potential productivity were 50.9%, 17.6% and 3.2%, respectively; The average sensitivity coefficients of average temperature in western region and central region respectively were 1.77 and 1.99, the maximum value was 3.63 in eastern region. The average sensitivity coefficients of precipitation in western region reached 1.6 of the highest value, while the low value area of sensitivity coefficients to precipitation was in eastern region. Precipitation was the most sensitive variable to spring maize climatic potential productivity in western region; Temperature was the most sensitive variable to spring maize climatic potential productivity in eastern region.

Key words: Spring maize, Climatic potential productivity, Dynamic statistic model, Climate change

Table 1

The study districts and distribution for the sites"

区域District 站点Site
西部地区Western region 扶余,大安,洮南,前郭,白城,镇赉,松原,乾安,通榆,长岭
中部地区Central region 德惠,东丰,九台,梨树,辽源,双阳,公主岭,伊通,长春,四平,农安,榆树,双辽
东部地区Eastern region
安图,白山,敦化,东岗,二道,和龙,通化县,柳河,临江,龙井,舒兰,磐石,梅河口,吉林城郊,集安,
辉南,延吉,长白,通化,汪清,烟筒山,图们,永吉,蛟河,靖宇,珲春,桦甸

Table 2

Three point temperature of spring maize in every growth period ℃"

生育时期Development period T0 T1 T2
播种-出苗Sowing-emergence 12 8 35
出苗-拔节Emergence-jointing 20 10 38
拔节-抽雄Jointing-heading 26 18 38
抽雄-乳熟Heading-milk maturity 27 19 30
乳熟-成熟Milk maturity-maturity 22 16 30

Table 3

Spatial change of spring maize production potential kg/hm2"

站点Site Y1 Y2 Y3 站点Site Y1 Y2 Y3
舒兰Shulan 26 850.52 19 948.68 19 178.90 白山Baishan 24 239.16 16 574.18 16 564.09
通化Tonghua 25 210.39 19 518.59 19 518.59 临江Linjiang 24 432.12 18 995.27 18 995.27
永吉Yongji 26 415.39 20 821.71 20 143.78 集安Ji’an 24 763.37 21 478.55 21 294.15
双阳Shuangyang 26 448.45 20 743.81 18 679.46 长白Changbai 25 268.92 8 156.78 7 923.75
蛟河Jiaohe 25 775.30 18 207.57 17 714.73 白城Baicheng 28 018.55 21 646.82 9 529.32
敦化Dunhua 25 067.98 12 904.21 12 513.37 洮南Taonan 28 890.79 23 414.84 9 077.88
安图Antu 24 285.80 14 519.03 13 976.35 镇赉Zhenlai 28 446.12 22 367.24 9 945.62
汪清Wangqing 24 467.99 16 093.11 14 783.78 大安Da’an 29 054.21 23 179.18 11 070.41
辽源Liaoyuan 26 233.89 21 279.99 19 656.92 松原Songyuan 27 520.31 22 327.15 11 875.21
东丰Dongfeng 27 566.14 21 102.77 17 266.36 乾安Qian’an 27 623.70 22 427.60 10 765.50
磐石Panshi 26 107.96 19 856.23 19 309.50 前郭Qianguo 27 725.69 22 580.93 12 050.67
图们Tumen 22 995.50 16 898.60 15 993.45 通榆Tongyu 27 977.29 22 984.32 9 334.00
柳河Liuhe 26 268.61 20 353.32 19 891.71 长岭Changling 27 310.05 22 141.09 11 480.67
桦甸Huadian 25 537.65 19 598.15 19 498.04 扶余Fuyu 26 435.26 19 609.74 12 746.97
辉南Huinan 26 374.00 20 277.44 19 717.49 农安Nong’an 27 491.22 21 877.96 15 645.30
靖宇Jingyu 25 634.29 14 487.66 14 422.83 德惠Dehui 26 965.09 13 467.72 13 422.03
东岗Donggang 26 116.89 12 889.15 12 889.15 九台Jiutai 26 891.11 21 661.31 18 048.12
二道Erdao 25 804.78 11 459.87 11 431.66 榆树Yushu 27 566.14 21 102.77 17 266.36
和龙Helong 24 634.39 15 715.69 14 728.27 双辽Shuangliao 28 701.25 24 052.79 15 515.88
龙井Longjing 24 975.39 18 955.80 17 501.82 梨树Lishu 27 534.60 23 160.29 18 772.67
珲春Hunchun 23 430.21 17 178.12 16 307.89 伊通Yitong 26 970.93 20 595.48 18 669.78
延吉Yanji 24 711.55 18 692.70 16 832.66 四平Siping 27 125.30 22 875.11 19 880.11
长春Changchun 27 382.36 22 189.90 18 213.50 梅河口Meiheikou 26 490.31 20 753.93 19 799.12
通化县Tonghuaxian 25 146.90 18 180.69 18 194.58 公主岭Gongzhuling 27 675.85 22 915.47 18 461.87
烟筒山Yantongshan 26 177.22 20 366.88 19 915.91 吉林城郊Jilinchengjiao 25 691.01 20 518.14 19 526.52

Table 4

Changing trends of spring maize production potential kg/(hm2·10a)"

站点Site DY1 DY2 DY3 站点Site DY1 DY2 DY3
舒兰Shulan -218.40** 445.54** 418.48 白山Baishan 6.45* 469.93 469.93
通化Tonghua -194.47** 166.03 166.03 临江Linjiang -314.49 -174.86 -174.86
永吉Yongji 43.35** 414.38** 874.16 集安Ji’an -208.80 -38.69 -123.58
双阳Shuangyang -174.26 217.07 -175.85 长白Changbai 29.871 1 071.30 982.44
蛟河Jiaohe -355.80** 69.62** 75.52 白城Baicheng -510.77 60.36 -285.42
敦化Dunhua -356.57** 1 081.10** 1 087.70 洮南Taonan -95.54 466.00 -202.86
安图Antu -216.88** 419.10** 569.03 镇赉Zhenlai 36.98 486.10 192.22
汪清Wangqing -78.57** 351.92** 332.78 大安Da’an -383.45 54.46 290.97
辽源Liaoyuan -278.56** -52.32** -230.81 松原Songyuan -125.47 478.84 430.00
东丰Dongfeng -102.35** 274.57** -245.94 乾安Qian’an -641.22 -99.29 81.56
磐石Panshi -323.60** 16.38** -94.31 前郭Qianguo -320.88 136.84 91.01
图们Tumen 563.81** 1 051.30 1 227.60 通榆Tongyu -568.25 130.40 -447.63
柳河Liuhe -675.66** -182.14** -232.92 长岭Changling -721.58 -136.92 -721.27
桦甸Huadian -400.57** -86.77** -114.38 扶余Fuyu -988.59 -255.80 233.90
辉南Huinan -368.70** -8.82** -113.55 农安Nong’an -34.78 65.33 -549.32
靖宇Jingyu -254.10** 632.76* 641.00 德惠Dehui -391.42 988.38 991.39
东岗Donggang -319.04** 204.51* 204.51 九台Jiutai -369.60 115.40 -138.25
二道Erdao 74.82** 1 039.40 1 041.60 榆树Yushu -102.35 274.57 -245.94
和龙Helong -270.90** 21.23 -3.34 双辽Shuangliao -471.80 -297.88 75.63
龙井Longjing -416.55** -51.76 158.23 梨树Lishu -184.13 261.00 -160.73
珲春Hunchun 42.21** 744.30 884.82 伊通Yitong 386.95 805.99 328.04
延吉Yanji 40.79** 282.24 118.25 四平Siping -955.59 -510.10 -808.48
长春Changchun -139.40 425.82 134.33 梅河口Meiheikou -437.32 40.16 -167.83
通化县Tonghuaxian -733.92** -62.30 -62.30 公主岭Gongzhuling 114.21 517.18 -75.46
烟筒山Yantongshan -433.47** -203.29** -151.75 吉林城郊Jilinchengjiao -693.62 -184.01 -191.16

Fig.1

Temporal and spatial distribution of the influence rate of temperature and precipitation on spring maize"

Table5

Change trends of climate factors of spring maize in every growth period"

站点Site 平均气温(℃/10a)
Average temperature
降水(mm/10a)
Precipitation
站点Site 平均气温(℃/10a)
Average temperature
降水(mm/10a)
Precipitation
舒兰Shulan 0.25** -5.25 白山Baishan 0.22 -8.82
通化Tonghua 0.17** -1.39 临江Linjiang 0.08 -6.93
永吉Yongji 0.21** 8.89 集安Ji’an 0.13** -15.41
双阳Shuangyang 0.22** 1.58 长白Changbai 0.30** -17.15*
蛟河Jiaohe 0.15** -5.02 白城Baicheng 0.26** -12.95
敦化Dunhua 0.32** -9.13 洮南Taonan 0.29** -10.4
安图Antu 0.14** -1.03 镇赉Zhenlai 0.24** -2.46
汪清Wangqing 0.13** -6.31 大安Da’an 0.21** 1.28
辽源Liaoyuan 0.16** -10.01 松原Songyuan 0.33** 0.25
东丰Dongfeng 0.17** -6.24 乾安Qian’an 0.26** -3.07
磐石Panshi 0.18** -0.50 前郭Qianguo 0.27** -3.42
图们Tumen 0.23** -7.60 通榆Tongyu 0.24** -11.87
柳河Liuhe 0.19** -5.82 长岭Changling 0.28** -17.20*
桦甸Huadian 0.16** 7.38 扶余Fuyu 0.23** -2.03
辉南Huinan 0.19** -0.80 农安Nong’an 0.18** -15.79
靖宇Jingyu 0.25** 7.91 德惠Dehui 0.23** -5.95
东岗Donggang 0.12** -1.14 九台Jiutai 0.28** -11.62
二道Erdao 0.25** -0.17 榆树Yushu 0.21** -14.05
和龙Helong 0.07 -2.18 双辽Shuangliao 0.16** -1.53
龙井Longjing 0.09 1.24 梨树Lishu 0.30** -12.00
珲春Hunchun 0.26** -15.32 伊通Yitong 0.25** -8.15
延吉Yanji 0.10 -2.83 四平Siping 0.25** -15.27
长春Changchun 0.29** 6.94 梅河口Meiheikou 0.22** -2.34
通化县Tonghuaxian 0.16* 11.68 公主岭Gongzhuling 0.23** -5.24
烟筒山Yantongshan 0.15** -1.73 吉林城郊Jilinchengjiao 0.16** -1.85

Table 6

Sensitivity coefficients of temperature and precipitation of spring maize in every growth period"

站点Site 平均气温Average temperature 降水Precipitation 站点Site 平均气温Average temperature 降水Precipitation
舒兰Shulan 1.10 0.41 白山Baishan 5.59 0.29
通化Tonghua 2.27 -0.18 临江Linjiang 2.79 -0.33
永吉Yongji 0.50 -0.52 集安Ji’an 0.82 -0.11
双阳Shuangyang 2.70 0.09 长白Changbai 5.88 -0.65
蛟河Jiaohe 3.72 -0.21 白城Baicheng 1.47 2.15
敦化Dunhua 6.45 0.33 洮南Taonan 2.22 1.97
安图Antu 4.42 -0.04 镇赉Zhenlai 1.43 2.01
汪清Wangqing 2.42 0.86 大安Da’an 0.96 1.45
辽源Liaoyuan 2.60 -0.58 松原Songyuan 1.75 0.74
东丰Dongfeng 0.53 1.18 乾安Qian’an 0.08 1.96
磐石Panshi 3.33 0.28 前郭Qianguo 1.47 0.80
图们Tumen 4.75 0.72 通榆Tongyu 2.07 2.02
柳河Liuhe 4.33 0.41 长岭Changling 0.27 1.33
桦甸Huadian 2.68 0.05 扶余Fuyu 3.44 1.64
辉南Huinan 2.54 0.58 农安Nong’an 0.03 1.04
靖宇Jingyu 6.82 -0.46 德惠Dehui 3.93 2.29
东岗Donggang 6.41 -0.14 九台Jiutai 2.13 1.07
二道Erdao 8.89 0.37 榆树Yushu 0.03 0.30
和龙Helong 4.85 0.29 双辽Shuangliao 3.02 1.87
龙井Longjing 2.26 0.81 梨树Lishu 1.05 1.08
珲春Hunchun 4.01 -0.37 伊通Yitong 2.21 0.48
延吉Yanji 2.85 0.69 四平Siping 1.92 2.27
长春Changchun 2.09 1.17 梅河口Meiheikou 2.12 0.33
通化县Tonghuaxian 4.11 -0.50 公主岭Gongzhuling 1.27 1.41
烟筒山Yantongshan 3.73 -0.49 吉林城郊Jilinchengjiao 1.31 -0.20
[1] 周曙东, 周文魁, 朱红根 , 等. 气候变化对农业的影响及应对措施. 南京农业大学学报, 2010,10(1):34-39.
[2] Schönhart M, Schauppenlehner T, Kuttner M . Climate change impacts on farm production,landscape appearance,and the environment:Policy scenario results from an integrated field-farm-landscape model in Austria. Agricultural Systems, 2016,145:39-50.
doi: 10.1016/j.agsy.2016.02.008
[3] 魏凤英, 育鸿兴, 王丽萍 . 20世纪80-90年代我国气候增暖进程的统计事实. 应用气象学报, 2003,14(1):79-86.
[4] 袁彬, 郭建平, 冶明珠 , 等. 气候变化下东北春玉米品种熟型分布格局及其气候生产潜力. 科学通报, 2012,57(14):1252-1262.
[5] 陈群, 耿婷, 候雯嘉 , 等. 近20年东北气候变暖对春玉米生长发育及产量的影响. 中国农业科学, 2014,47(10):1904-1916.
doi: 10.3864/j.issn.0578-1752.2014.10.004
[6] 袁彬 . 气候变化下东北春玉米气候生产潜力及农业气候资源利用率. 北京:中国气象科学研究院, 2012: 37-44.
[7] 王宗明, 张柏, 张树清 , 等. 松嫩平原农业气候生产潜力及自然资源利用率研究. 中国农业气象, 2005,26(1):1-6.
[8] 郭建平, 高素华, 刘玲 . 我国西部地区农业开发与农业气候资源高效利用. 资源科学, 2002,24(2):22-25.
doi: 10.3321/j.issn:1007-7588.2002.02.005
[9] Zhong H L, Gao R, Yang X . Climate characteristics in three gorges reservoir area after water storage and its impact on the production potential. Meteorological and Environmental Research, 2010,1(2):53-56.
[10] 李奇峰, 陈阜, 李玉义 , 等. 东北地区粮食生产能力研究.作物杂志, 2005(4):3-6.
doi: 10.3969/j.issn.1001-7283.2005.04.002
[11] 李忠辉, 刘实, 郭春明 , 等. 未来气候变化对东北三省水稻产量影响的评估. 中国农业大学学报, 2015,20(2):223-228.
[12] 中国气象局预测减灾司, 中国气象局国家气象中心. 中国气象地理区划手册.北京: 气象出版社, 2006: 18-19.
[13] 郭建平, 高素华, 潘亚茹 . 东北地区农业气候生产潜力及其开发利用对策. 气象, 1994,21(2):3-9.
[14] 杨勤 . 宁夏区域太阳日辐射通量计算方法的研究.干旱气象, 2007(3):23-27.
[15] 毛留喜, 魏丽 . 大宗作物气象服务手册.北京: 气象出版社, 2015: 42-58.
[16] 杨霏云, 郑秋红, 罗蒋梅 , 等. 实用农业气象指标.北京: 气象出版社, 2015: 11-15.
[17] 中国气象局. 中华人民共和国气象局行业标准——北方春玉米干旱等级.北京: 气象出版社, 2015: 6-7.
[18] 吕硕, 杨晓光, 赵锦 , 等. 气候变化和品种更替对东北地区春玉米产量潜力的影响. 农业工程学报, 2013,29(18):179-190.
[19] McCuen R H . A sensitivity and error analysis of procedures used for estimating evaporation. Water Resources Bulletin, 1974,3:486-497.
doi: 10.1111/j.1752-1688.1974.tb00590.x
[20] Beven K . A sensitivity analysis of the penman-monteith actual evapotranspiration estimates. Journal of Hydrology, 1979,44:169-190.
doi: 10.1016/0022-1694(79)90130-6
[21] 王冬妮, 郭春明, 晏晓英 , 等. 吉林省春玉米生产潜力估算及其时空变化特征分析. 干旱地区农业研究, 2011,29(3):249-253.
[22] 石淑芹 . 基于多源数据的吉林省玉米生产力区划研究. 北京:中国农业科学院, 2009: 78-88.
[23] 吕硕, 杨晓光, 赵锦 , 等. 气候变化和品种更替对东北地区春玉米产量潜力的影响.农业工程学报, 2013(18):179-188.
[24] 王静, 杨晓光, 吕硕 , 等. 黑龙江省春玉米产量潜力及产量差的时空分布特征. 中国农业科学, 2012,45(10):1914-1925.
doi: 10.3864/j.issn.0578-1752.2012.10.004
[1] Wenchao Zhang,Yufeng Wang,Yifei Zhang,Jingyu Xu,Qiong Wu,Tianyu Chen,Pengfei Zhang,Chen Pang,Chunshuang Tang,Jian Fu,Kejun Yang. Effects of Different Tillage Methods on Changes of Soil Nutrients and Grain Yield of Maize in Semi-Arid Regions of Songnen Plain [J]. Crops, 2017, 33(4): 123-128.
[2] . [J]. Crops, 2013, 29(3): 56-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .