Crops ›› 2019, Vol. 35 ›› Issue (2): 115-121.doi: 10.16035/j.issn.1001-7283.2019.02.018

Previous Articles     Next Articles

Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas

Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai   

  1. Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2018-08-08 Revised:2019-01-03 Online:2019-04-15 Published:2019-04-12

Abstract: Aim

ing at the two main limiting factors of drought or water shortage and low-temperature in dryland maize production in cold areas, an experiment of single factor random block design was conducted in the demonstration base of water-saving agriculture of Yangqu County, Shanxi Province. Five half-mulching treatments with different ridge heights were set up to study the effects of micro-ridge film mulching on soil water and temperature and yield of dryland maize in cold areas. The results showed that the average soil temperature of film side sowing line 8cm decreased by 0.3 for every 5cm mulching-ridge increase by 5cm; when the ridge height increased from 0cm to 5cm and 10cm, the soil water content of 0-20cm was significantly increased by 3.6 and 5.3 percentage points (P<0.01); For every 10cm of mulching ridge height increase, the jointing stage of maize was delayed by 1d, and the stage of sprouting and silking was delayed by 1d. The economic yield (P<0.01) of the ridge height 5cm treatment was significantly higher than that of the ridge height of 15, 20 and 0cm treatments, and there was no significant difference with the treatment of 10cm ridge height. The water use efficiencies (WUE) of the treatments of 5cm and 10cm ridge heights, which was significantly higher than that of the 0 and 20cm ridge height, and the average increase was 2.1 and 2.2kg/(hm 2·mm), which were increased by 6.8% and 7.2%, respectively. The results showed that micro-ridge mulching (ridge height 5-10cm) could coordinate the contradiction between the two of increasing soil temperature and micro-collecting water by increasing the ridge height. And at the same time, it can take into account the effects of mulching of increasing soil temperature, preserving soil moisture and micro-collecting water, and increase yield and WUE. It is an appropriate mulching method for dryland maize in cold areas.

Key words: Cold areas, Dryland maize, Micro-ridge film mulching, Soil water and temperature, Yield

Table 1

Precipitation distribution in 1960-2005 and 2016, 0-200cm soil water storage in 2016 mm"

年份Year 5月
May
6月
June
7月
July
8月
August
9月
September
5-9月
From May to September
降水年型
Precipitation year type
底墒(0~200cm)
Base soil moisture
2016 19.1 47.2 241.0 44.4 28.6 380.3 平水年 386.4(好)
1960-2005 33.2 57.0 102.9 103.7 62.2 359.0 - -
2016-(1960-2005) -14.1 -9.8 138.1 -59.3 -33.6 21.3 苗期、灌浆期受旱

Fig.1

Average daily soil temperature of maize seedling stage at 8cm soil depth under different treatments RH0, RH5, RH10, RH15 and RH20 indicate ridge height of 0, 5, 10, 15 and 20cm, respectively, CK indicates no plastic film mulching, the same below"

Fig.2

Average the hour soil temperature of maize seedling stage at 8cm soil depth under different treatments"

Fig.3

0-20cm soil moisture content at maize seedling stage under different treatments Different lowercase letters indicate a significant difference (P<0.05); uppercase letters indicate a significant difference (P<0.01), the same below"

Table 2

0~200cm soil water storage at different growth stages in dryland maize under different treatments mm"

处理Treatment 出苗期
Emergence
拔节期
Jointing
抽雄期
Heading
灌浆期
Filling
收获期
Harvesting
平均值
Average
RH0 371.1aA 333.2bB 418.2aA 386.1aA 339.1aA 369.5aA
RH5 372.0aA 321.5cC 417.4aA 388.3aA 340.5aA 367.5aA
RH10 371.3aA 335.4bB 412.8aA 385.4aA 347.7aA 370.1aA
RH15 373.4aA 336.1bB 413.4aA 379.2aA 348.9aA 369.8aA
RH20 373.3aA 346.4aA 416.6aA 387.8aA 340.2aA 372.4aA
CK 366.7aA 338.6bB 413.0aA 391.9aA 325.1bB 366.7aA
平均值±标准偏差Average±Standard deviation 371.2±2.6 335.3±8.2 415.4±2.5 386.3±4.2 340.5±8.0 369.3±2.0

Table 3

Growing process of dryland maize under different treatments"

处理Treatment 播种期Sowing 出苗期Emergence 拔节期Jointing 抽雄期Heading 吐丝期Silking 成熟期Maturity
RH0 4月27日 5月11日 6月23日 7月23日 7月24日 未成熟
RH5 4月27日 5月11日 6月24日 7月24日 7月25日 未成熟
RH10 4月27日 5月11日 6月24日 7月24日 7月25日 未成熟
RH15 4月27日 5月11日 6月25日 7月25日 7月26日 未成熟
RH20 4月27日 5月11日 6月25日 7月25日 7月26日 未成熟
CK 4月27日 5月13日 6月28日 7月30日 7月31日 未成熟

Table 4

Grain yield and related yield traits under different treatments in dryland"

处理
Treatment
穗长(cm)
Ear length
穗粗(cm)
Ear
diameter
穗行数
Ear row
number
行粒数
Grain number
per row
穗粒数
Grain number
per spike
百粒重(g)
100-grain
weight
经济产量
(kg/hm2)
Grain yield
生物产量
(kg/hm2)
Shoot biomass
出子率(%)
Shelling
percentage
收获指数(%)
Harvest
index
RH0 14.9abA 7.0aA 17.0aA 34.2aA 579.7bB 32.4cC 12 643.4bB 23 766.9cC 86.6aA 49.9aA
RH5 15.2aA 7.0aA 17.5aA 34.2aA 597.7aA 34.9aA 13 444.0aA 27 540.4aA 87.4aA 48.8abA
RH10 14.5bB 7.1aA 17.4aA 33.2aA 576.0bB 33.7bB 13 330.7aA 25 536.1bB 87.3aA 49.5aA
RH15 14.3bB 7.1aA 17.4aA 32.9aA 573.6bB 33.9bB 12 742.0bB 25 849.6bB 87.1aA 47.7bB
RH20 14.5bB 7.1aA 17.1aA 32.9aA 560.3cC 33.6bB 12 645.0bB 26 506.6bB 86.7aA 44.9cC
CK 13.3cC 7.1aA 17.0aA 30.3bB 514.0dD 33.8bB 10 514.3cC 25 923.0bB 87.1aA 45.6cC

Fig.4

Water use efficient of dryland maize under different treatments"

[1] 张冬梅, 张伟, 刘恩科 , 等. 早熟区不同播期旱地玉米产量对施肥水平和种植密度的响应. 中国生态农业学报, 2013,21(12):1449-1458.
doi: 10.3724/SP.J.1011.2013.30581
[2] 张冬梅, 姜春霞, 黄学芳 , 等. 早熟区不同熟期玉米品种产量对播期和施肥方式的响应. 中国农学通报, 2015,31(24):59-66.
[3] 崔石新, 樊明寿, 贾立国 , 等. 沟垄集雨技术研究进展及其在旱作马铃薯生产中的应用潜力. 作物杂志, 2017(5):8-12.
doi: 10.16035/j.issn.1001-7283.2016.05.002
[4] 张维国 . 不同类型地膜覆盖对马铃薯产量及品质的影响. 作物杂志, 2017(1):87-90.
[5] 郭满平, 刘生瑞, 白宏鹏 . 不同覆膜栽培对玉米土壤水分温度及产量的影响. 干旱地区农业研究, 2015,33(2):50-55.
doi: 10.16302/j.cnki.1000-7601.2015.02.008
[6] 李尚中, 樊廷录, 王磊 , 等. 不同覆膜方式对旱地玉米生长发育、产量和水分利用效率的影响. 干旱地区农业研究, 2013,31(6):22-27.
doi: 10.3969/j.issn.1000-7601.2013.06.004
[7] 李小燕, 张雷, 牛芬菊 , 等. 旱地组合型微垄全膜不同覆盖时期对土壤水分及胡麻生长的影响. 干旱地区农业研究, 2015,33(2):16-21.
doi: 10.16302/j.cnki.1000-7601.2015.02.003
[8] 杨祁峰, 岳云, 熊春蓉 , 等. 不同覆膜方式对陇东旱塬玉米田土壤温度的影响. 干旱地区农业研究, 2017(6):29-33.
[9] 张德奇, 廖允成, 贾志宽 , 等. 宁南旱区谷子地膜覆盖的土壤水温效应. 中国农业科学, 2005,38(10):2069-2075.
doi: 10.3321/j.issn:0578-1752.2005.10.018
[10] 白秀梅, 卫正新, 郭汉清 . 旱地起垄覆膜微集水种植玉米技术研究. 山西农业大学学报(自然科学版), 2011,31(1):13-17.
doi: 10.3969/j.issn.1671-8151.2011.01.004
[11] 张平良, 郭天文, 曾骏 , 等 . 一种北方旱区密植作物微垄覆膜穴播集雨栽培方法:中国, 106171386A. 2016 -12-07.
[12] 秦永林, 贾立国, 崔亚超 , 等 . 旱作马铃薯微垄覆膜侧播农艺方法:中国, 103460967A. 2013 -12-25.
[13] 张冬梅, 王娟玲, 黄学芳 , 等 . 一种冷凉区旱地玉米微垄覆膜播种方法:中国, 103843557A. 2014 -06-11.
[14] 刘恩科, 姜春霞, 黄学芳 , 等. 覆膜方式对土壤环境及玉米产量的影响. 中国农学通报, 2015,31(27):46-52.
doi: 10.11924/j.issn.1000-6850.casb15060121
[15] Qin R J, Stamp P, Richner W . Impact of tillage on maize rooting in a Cambisol and Luvisol in Switzerland. Soil and Tillage Research, 2006,85(1/2):50-61.
doi: 10.1016/j.still.2004.12.003
[16] Barlow E W R, Boersma L, Young J L . Photosymthesis,transpiration,and leaf elongation in corn seedlings at suboptimal soil temperatures. Agronomy Journal, 1977,69(1):95-100.
doi: 10.2134/agronj1977.00021962006900010025x
[17] 李尚中, 王勇, 樊廷录 , 等. 旱地玉米不同覆膜方式的水温及增产效应. 中国农业科学, 2010,43(5):922-931.
doi: 10.3864/j.issn.0578-1752.2010.05.005
[18] 谢孟林, 查丽, 郭萍 , 等. 垄作覆膜对川中丘区土壤物理性状和春玉米产量的影响. 干旱地区农业研究, 2017,35(2):31-38.
doi: 10.7606/j.issn.1000-7601.2017.02.06
[19] 韩清芳, 李向拓, 王俊鹏 , 等. 微集水种植技术的农田水分调控效果模拟研究. 农业工程学报, 2004,20(2):78-82.
doi: 10.3321/j.issn:1002-6819.2004.02.018
[20] 张友昌, 张教海, 王孝纲 , 等. 垄作的生理生态效应研究进展. 棉花科学, 2012,34(6):3-8.
[21] Ramakrishna A, Tam H M, Wania S P , et al. Effect of mulch on soil temperature,moisture,weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 2006,95(2/3):115-125.
doi: 10.1016/j.fcr.2005.01.030
[22] 谢军红, 柴强, 李玲玲 , 等. 黄土高原半干旱区不同覆膜连作玉米产量的水分承载时限研究. 中国农业科学, 2015,48(8):1558-1568.
doi: 10.3864/j.issn.0578-1752.2015.08.10
[1] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
[2] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[3] Lifeng Dong,Xiaohu Lin,Chunrong Liu,Guishuang Hou,Chunlu Zhang,Jinfeng Fu,Fengbao Wang. Effects of Compound Seed Coating Agents on Pea Growth and Yield [J]. Crops, 2019, 35(2): 185-191.
[4] Yunqing Gao,Shutong Li,Qibing Shang,Junchun Shi,Dongxu Xu. Nodules and Yield of Faba Bean under Different Fertilizer Treatments [J]. Crops, 2019, 35(2): 164-167.
[5] Huihui Tang,Yanli Xu,Qingyan Wang,Zhengbo Ma,Guangyan Li,Hui Dong,Zhiqiang Dong. Effects of Foliar Spraying 5-Aminolevulinic Acid on Spring Maize Growth and Yield under Different Planting Densities [J]. Crops, 2019, 35(2): 136-141.
[6] Deming Xiang,Mingfa Zhang,Shuguang Peng,Feng Tian,Jianxin Luo,Wu Chen,Yunfan Cai,Minghui Tian,Qisong Lü. Effects of Consecutive Applying Different New Type Fertilizers on Soil Fungal Communities and Tobacco Quality and Yield [J]. Crops, 2019, 35(2): 156-163.
[7] Xiaojun Xiao,Weisheng Lü,Paolan Yu,Wei Zheng,Yazhen Li,Lei Hu,Fuliang Xiao,Shaowen Zhang,Tianbao Huang,Guobin Xiao. Effects of Nitrogen Application Rate on Yield Formation and Nitrogen Use Efficiency of Early Rice under Rape Straw Returning in Triple Cropping [J]. Crops, 2019, 35(2): 103-109.
[8] Xingqi Ou,Xiujuan Ren,Xinhua Li,Yangjuan Ou. Effects of Side-Row Marginal Advantage and Inner-Row Performance on Plot Yield and Yield Components of Wheat [J]. Crops, 2019, 35(1): 97-102.
[9] Kainan Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Ruiqi Ma,Yingjie Zhu,Zheli Xu,Baojun Zhang,Guangcai Zhao. Effects of Tridimensional Uniform Sowing and Fertilizer on Grain and Physiological Characteristics of Winter Wheat [J]. Crops, 2019, 35(1): 103-110.
[10] Qian Liang,Wenya Liu,Junzhu Ge,Ming Zhao,Haipeng Hou,Yong′an Yang,Decai Xin. Regulation Effects of Narrow-Double Row Precision Sowing with Subsoiling on Yield in Summer Maize [J]. Crops, 2019, 35(1): 111-115.
[11] Yang Zhang,Huilin Yu,Yanbo Wang. Study on Yield and Related Traits of Maize Varieties in Different Ecological Regions of Eastern North China [J]. Crops, 2019, 35(1): 38-43.
[12] Haibing Wu,Daohong Liu,Ming Zhong,Youyuan Wang. Effects of Water Management and Potash Application on Grain Yield and Lodging Resistance of Rice [J]. Crops, 2019, 35(1): 127-133.
[13] Jinghong Tan,Luping Zhang,Qixia Wu,Jianqiang Zhu,Zaizhen Zhang. Comparative Research on the Effects of Reducing Nitrogen from Different Fertilizers on Cotton [J]. Crops, 2019, 35(1): 134-140.
[14] Xiaoming Wang,Dacheng Li,Zhengda Liao,Yuanchu Gan,Huixiu Chen,Xide Su,Zenglin Wei. Comparation of Agronomic Traits and Yield among Sugarcane Varieties [J]. Crops, 2019, 35(1): 50-55.
[15] Shuping Hu,Tiantian Meng,Hui Zhao,Haizhu Bao. Effects of Subsoiling on Photosynthetic Performance and Yield of Sunflower [J]. Crops, 2019, 35(1): 116-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Crops, 2013, 29(4): 48 -51 .
[2] Yaoyan Li,Yanyan Pei,Shanyan Huang,Yingyan Zhang,Songji Wei,Yangjiao Xie,Qiong Zhou. Pharmacognosy of Zhongliuteng (Pileostegia tomentella Hand. Mazz) of Yao Medicine[J]. Crops, 2018, 34(1): 61 -65 .
[3] Linjian Dai,Wu Chen,Tian Zhou,Jun Zhong. Selection Mutant of Resistant to Black Shank on Tobacco by Anther Culture[J]. Crops, 2018, 34(1): 66 -70 .
[4] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[5] Jiachen Cao,Youfei Zheng,Hui Zhao,Jingxin Xu. Influence of Open-Top Chamber on Growth and Yield of Winter Wheat[J]. Crops, 2018, 34(1): 88 -95 .
[6] . [J]. Crops, 2012, 28(2): 10 -15 .
[7] . [J]. Crops, 1996, 12(3): 24 .
[8] . [J]. Crops, 1996, 12(5): 11 .
[9] . [J]. Crops, 1995, 11(3): 28 -29 .
[10] . [J]. Crops, 1995, 11(3): 39 .