Crops ›› 2019, Vol. 35 ›› Issue (6): 195-202.doi: 10.16035/j.issn.1001-7283.2019.06.031

Previous Articles    

Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress

Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2019-06-24 Revised:2019-10-16 Online:2019-12-15 Published:2019-12-11
  • Contact: Yuxian Zhang

Abstract:

In order to study the effects of melatonin soaking on the germination of soybean seeds under salt-alkali stress, the soybean variety Kenfeng 16 was used as experimental material to study the effects of 100μmol/L melatonin soaked on the seeds germination of soybean under different concentrations of mixed saline-alkali stress. The results showed that compared with the control, with the increase of concentration, the saline-alkali stress continuously reduced the germination rate, germination index, bud fresh weight and dry weight of soybean seeds, and the antioxidant enzymes superoxide dismutase, peroxidase, catalase, glutathione reductase, glutathione peroxidase activities rised first and then decreased. The activity of APX increased continuously. The content of soluble sugar, soluble protein and proline osmotic adjustment substances increased first and then decreased. The content of membrane lipid peroxidation products malonaldehyde (MDA), H2O2, and $\mathop{{O}}_{2}^{{\mathop{}_{\ .}^{-}}}$ rate of production was on the rise. Melatonin soaking could increase the germination rate, germination index, bud fresh weight, bud dry weight and antioxidant enzymes activity, as well as the content of osmotic adjustment substances, and decrease the content of MDA, H2O2 and $\mathop{{O}}_{2}^{{\mathop{}_{\ .}^{-}}}$ production rate under different concentrations of saline-alkali stress. In summary, melatonin soaking can alleviate the inhibition of soybean seed germination under different concentrations of saline-alkali stress, and can increase the activity of antioxidant enzymes and osmotic adjustment substances, and reduce the degree of lipid peroxidation on membrane.

Key words: Saline-alkali stress, Soybean, Melatonin, Seed germination

Fig.1

Effects of melatonin on the germination rate of soybean seeds under saline-alkali stress Different lowercase letters indicate significant difference (P<0.05), the same below"

Fig.2

Effects of melatonin on germination index of soybean seeds under saline-alkali stress"

Fig.3

Effects of melatonin on the relative salt injury rate of soybean seeds under saline-alkali stress"

Fig.4

Effects of melatonin on antioxidant enzyme activities of soybean seeds under saline-alkali stress"

Fig.5

Effects of melatonin on the activity of GR and GPX of soybean seeds under saline-alkali stress"

Fig.6

Effects of melatonin on osmotic adjustment substance content and membrane lipid peroxidation of soybean seeds under saline-alkali stress"

Table 1

Effects of melatonin on bud length,bud fresh weight and bud dry weight of soybean seed under saline-alkali stress"

处理
Treatment
芽长(cm)
Bud length
芽鲜重(g)
Bud fresh weight
芽干重(g)
Bud dry weight
CK0 9.15±0.83a 0.85±0.06a 0.059±0.001a
MCK0 9.18±1.63a 0.89±0.05a 0.062±0.003a
CK25 7.86±2.72ab 0.59±0.08bc 0.041±0.005bc
MCK25 8.07±1.53ab 0.68±0.10b 0.047±0.008b
CK50 6.42±0.67b 0.45±0.01c 0.031±0.002c
MCK50 7.01±0.51b 0.56±0.05bc 0.039±0.006bc
CK100 4.79±1.25cd 0.30±0.02de 0.021±0.004e
MCK100 5.58±0.56c 0.36±0.03d 0.025±0.001d
CK200 3.25±0.78d 0.21±0.01f 0.015±0.002f
MCK200 3.30±1.53d 0.26±0.03e 0.018±0.001ef

Table 2

Correlation coefficient between germination rate and related physiological and biochemical indexes of soybean seeds"

指标Index 发芽率
Germination
rate
SOD活性
SOD
activity
POD活性
POD
activity
CAT活性
CAT
activity
APX活性
APX
activity
MDA含量
MDA
content
H2O2含量
H2O2
content
脯氨酸含量
Proline content
可溶性糖含量
Soluble sugar content
可溶性蛋白含量
Soluble protein content
发芽率Germination rate -1
SOD活性SOD activity -0.349 -1
POD活性POD activity -0.322 -0.296 1
CAT活性CAT activity -0.089 -0.547 0.933** 1
APX活性APX activity -0.847** -0.325 0.331 0.061 -1
MDA含量MDA content -0.973** -0.469 0.254 0.027 -0.773** -1
H2O2含量H2O2content -0.963** -0.173 0.426 0.255 -0.758* -0.935** -1
脯氨酸含量Proline content -0.265 -0.961** 0.463 0.658* -0.242 -0.385 -0.106 1
可溶性糖含量
Soluble sugar content
-0.266 -0.962** 0.463 0.659* -0.243 -0.386 -0.106 1.000** 1
可溶性蛋白含量
Soluble protein content
-0.307 -0.334 0.949** 0.893** -0.404 -0.226 -0.384 0.506 0.505 1
[1] 朱广龙, 宋成钰, 于林林 , 等. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018,44(11):1713-1724.
doi: 10.3724/SP.J.1006.2018.01713
[2] 李倩倩, 罗旭, 许腾 , 等. 发芽对大豆中氨基酸含量的影响. 核农学报, 2018,32(3):548-554.
[3] Qureshi M I, Abdin M Z, Ahmad J , et al. Effect of long-term salinity on cellular antioxidants,compatible solute and fatty acid profile of sweet annie (Artemisia annua L.). Phytochemistry, 2013,95(6):215-223.
doi: 10.1016/j.phytochem.2013.06.026 pmid: 23871298
[4] Julkowska M M, Testerink C . Tuning plant signaling and growth to survive salt. Trends in Plant Science, 2015,20(9):586-594.
doi: 10.1016/j.tplants.2015.06.008 pmid: 26205171
[5] 陈蔚燕 . 新植物生长调节剂缓解盐胁迫对小麦种子生根的影响. 种子, 2017,36(8):102-104,111.
[6] 于奇, 曹亮, 金喜军 , 等. 低温胁迫下褪黑素对大豆种子萌发的影响. 大豆科学, 2019,38(1):56-62.
[7] Arnao B M, Hernández-Ruiz J . The physiological function of melatonin in plants. Plant Signaling and Behavior, 2006,1(3):89-95.
doi: 10.4161/psb.1.3.2640 pmid: 19521488
[8] 刘仕翔, 黄益宗, 罗泽娇 , 等. 外源褪黑素处理对镉胁迫下水稻种子萌发的影响. 农业环境科学学报, 2016,35(6):1034-1041.
[9] 赵小红, 罗庆熙, 饶玲 , 等. 外源褪黑素在低温胁迫下对黄瓜幼苗抗冷性的影响. 北方园艺,2017(14):55-59.
[10] 张海军 . 褪黑素处理对氯化钠胁迫下黄瓜种子萌发的影响及其分子机制. 北京:中国农业大学, 2016.
[11] 徐暑晖 . 外源褪黑素促进盐胁迫下玉米种子萌发的分子机理. 扬州:扬州大学, 2018.
[12] 张娜, 蒋庆, 李殿波 , 等. 外源施加褪黑素对NaCl胁迫下狼尾草种子萌发及相关生理指标的影响. 中国农业大学学报, 2014,19(4):54-60.
[13] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[14] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[15] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[16] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 上海: 科学出版社, 1999.
[17] 王晶英, 敖红, 张杰 , 等. 植物生理生化实验技术与原理. 哈尔滨: 东北林业大学出版社, 2003.
[18] 郭欣欣, 李晓锋, 朱红芳 , 等. 淹水胁迫对不结球白菜抗坏血酸-谷胱甘肽循环的影响. 植物生理学报, 2015,51(12):2181-2187.
[19] Xia X J, Wang Y J, Zou Y H , et al. Reactive oxygen specise are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 2009,150:801-814.
doi: 10.1104/pp.109.138230 pmid: 19386805
[20] Jiang J L, Su M, Wang L Y , et al. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination. Plant Physiology and Biochemistry , 2012,53:84-93.
doi: 10.1016/j.plaphy.2012.01.017
[21] 于崧, 张婷婷, 于立河 , 等. 盐碱胁迫对小麦种子萌发特性的影响. 黑龙江八一农垦大学学报, 2019,31(2):20-27.
[22] 杨发荣, 刘文瑜, 黄杰 , 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 2017,26(12):77-88.
[23] 李志萍, 张文辉, 崔豫川 . NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响. 生态学报, 2015,35(3):742-751.
doi: 10.5846/stxb201304190747
[24] López-Burillo S, Tan D X, Rodriguez-Gallego V , et al. Melatonin and its derivatives cyclic 3-hydroxymelatonin,N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by fenton reagents. Journal of Pineal Research, 2003,34(3):178-184.
doi: 10.1111/jpi.2003.34.issue-3
[25] 袁志刚 . 外源褪黑素在维持盐胁迫下棉花种子萌发和幼苗生长中的应用. 秦皇岛:河北科技师范学院, 2018.
[26] 刘文瑜, 杨宏伟, 魏小红 , 等. 外源NO调控盐胁迫下蒺藜苜蓿种子萌发生理特性及抗氧化酶的研究. 草业学报, 2015,24(2):85-95.
doi: 10.11686/cyxb20150211
[27] 刘月, 寇从贤, 付桂萍 , 等. 褪黑素对大豆幼苗盐害的缓解效应及机理研究. 中国油料作物学报, 2017,39(6):813-819.
[1] Ge Zhenmei,Liu Zhiguo,Zhao Lu,Zhang Xiaoyu,Liu Guixia. Effects of Salt Stress on Seeds Germination of Astragalus membranaceus [J]. Crops, 2019, 35(6): 187-194.
[2] Liu Jianxia,Bai Zezhen,Wang Runmei,Liu Lizhen,Zhang Zhenhua,Wen Riyu. Germination Characteristics and Accumulation Effects of Adzuki Bean under Heavy Metal Stress [J]. Crops, 2019, 35(6): 182-186.
[3] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45.
[4] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16.
[5] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage [J]. Crops, 2019, 35(3): 178-184.
[6] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[7] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
[8] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[9] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[10] Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li. Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum) [J]. Crops, 2019, 35(2): 142-149.
[11] Bo Liu,Ling Wei,Junhong Xiao,Haifeng Yang,Xueyan Duan,Aiping Chen,Ruilan Ren. Study on Improving the Hybrid Seed Setting Rate of Soybean [J]. Crops, 2019, 35(1): 81-84.
[12] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[13] Yue Li,Haiyan Li,Jidong Yu,Jie Deng,Yuanfu Gong,Junshu Zhu. Allelopathy of Extracts from Hemp Straw on Soybean [J]. Crops, 2019, 35(1): 175-179.
[14] Ma Mengxue,Zhao Lingling,Tang Si,Chen Xianjun,Qin Rui. The Effects of Different Disinfection Methods on Seed Germination and Study on the Environmental Bacteria in Safflower (Carthamus tinctorius L.) [J]. Crops, 2018, 34(6): 162-167.
[15] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .