Crops ›› 2020, Vol. 36 ›› Issue (3): 102-108.doi: 10.16035/j.issn.1001-7283.2020.03.016

Previous Articles     Next Articles

Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield

Song Xiao1, Huang Chenchen2, Huang Shaomin1(), Zhang Keke1, Yue Ke1, Zhang Shuiqing1, Guo Doudou1, Zhang Yuting1   

  1. 1Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2School of Life Sciences, Zhengzhou University, Zhengzhou 450002, Henan, China
  • Received:2019-11-27 Revised:2019-12-18 Online:2020-06-15 Published:2020-06-10
  • Contact: Shaomin Huang E-mail:hsm503@sohu.com

Abstract:

In order to explore the best tillage and fertilization mode for wheat in the tidal soil area of Huang-Huai-Hai, two farming methods (deep tillage and rotary tillage) and five fertilization modes (no fertilization, single application of chemical fertilizers and chemical fertilizers combined with three levels of organic fertilizer) were set up at the platform of the tidal soil test base in Xiayi County, Henan Province. In this experiment, soil physical and chemical properties, nitrogen and phosphorus content and yield of plant and grain effects of different tillage and fertility models were determined. The results showed that the application of organic fertilizer significantly increased the contents of total nitrogen, available phosphorus, available potassium and organic matter in the topsoil and plow bottom soil, and topsoil nutrients were higher in rotary tillage than that in deep tillage. Rotary tillage and organic fertilizer application promoted the content of nitrogen, phosphorus and potassium in plants and grains. The best effect was achieved by appling 22 500kg/ha organic fertilizer to grain nitrogen and plant nitrogen. The best effect was achieved by applying 7 500kg/ha organic fertilizer to grain phosphorus and plant phosphorus. The application of organic fertilizer by deep tillage significantly increased the yield of wheat, and the optimal application amount of organic fertilizer was 15 280kg/ha combined with chemical fertilizer.

Key words: Wheat, Deep tillage, Rotary tillage, Fertilization, Yield

Table 1

Effects of different tillage and fertilization modes on soil nitrogen content g/kg"

耕作方式
Tillage method
处理
Treatment
0~10cm 10~30cm
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 0.43Bc 0.48Cc 0.45Bc 0.30Bc 0.27Bc 0.29Bc
Rotary tillage NPK 0.74Aa 0.79Bb 0.77Aa 0.43Ab 0.45Ab 0.44Ab
M7.5 0.60Bb 0.67Bb 0.64Bb 0.44Aab 0.43Ab 0.44Ab
M15 0.64Bb 0.73Bb 0.69Bb 0.47Aab 0.48Aab 0.47Aab
M22.5 0.84Aa 0.92Aa 0.88Aa 0.51Aa 0.52Aa 0.52Aa
深耕 CK 0.42Bc 0.42Bc 0.42Bc 0.20Bc 0.17Bc 0.19Bc
Deep tillage NPK 0.56Bb 0.57Bb 0.57Bb 0.28Abc 0.31Abc 0.30Abc
M7.5 0.42Bc 0.44Bc 0.43Bc 0.31Ab 0.33Ab 0.32Abc
M15 0.47Bc 0.45Bc 0.46Bc 0.32Ab 0.34Abc 0.33Ab
M22.5 0.79Aa 0.83Aa 0.81Aa 0.38Aa 0.36Aa 0.37Aa

Table 2

Effects of different tillage and fertilization modes on soil available phosphorus content mg/kg"

耕作方式
Tillage method
处理
Treatment
0~10cm 10~30cm
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 3.33Cc 3.40Cc 3.36Bc 1.03Bc 0.94Bc 0.99Bc
Rotary tillage NPK 4.06Bbc 4.29Bb 4.18Bb 2.33Aa 2.34Bb 2.33Bb
M7.5 3.91Bc 3.83Cc 3.87Bbc 1.10Bc 1.13Bbc 1.12Bc
M15 4.02Bbc 4.07Bb 4.04Bbc 1.60Bb 1.63Bb 1.62Bb
M22.5 4.78Aa 4.92Aa 4.85Aa 2.71Aa 2.68Aa 2.70Aa
深耕 CK 2.10Cc 2.28Bc 2.19Bc 0.77Bc 0.78Cc 0.78Cc
Deep tillage NPK 3.49Ab 3.62Ab 3.56Bb 1.60Bb 1.57Bb 1.59Bb
M7.5 2.59Cc 2.53Bc 2.56Bc 0.85Bc 0.86Cc 0.85Cc
M15 4.01Aa 3.91Aab 3.96Bb 0.96Bbc 0.97Cc 0.96Cc
M22.5 4.31aA 4.58Aa 4.44Aa 2.38Aa 2.41Aa 2.39Aa

Table 3

Effects of different tillage and fertilization modes on soil available potassium content mg/kg"

耕作方式
Tillage method
处理
Treatment
0~10cm 10~30cm
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 63.32Bc 64.64Bc 63.98Bc 29.86Bc 30.17Bc 30.02Cd
Rotary tillage NPK 80.46Bb 82.33Bb 81.39Bb 57.32Aa 56.95Ab 57.14Aa
M7.5 87.23Bb 86.78Bb 87.01Bb 41.98Ab 43.16Bb 42.58Bc
M15 93.15Bb 94.99Bb 94.07Bb 54.03Aab 55.77Ab 54.90Ab
M22.5 126.78Aa 127.62Aa 127.20Aa 61.89Aa 62.23Aa 62.06Aa
深耕 CK 60.35Bc 61.65Cc 61.00Bc 28.79Cd 29.63Bc 29.21Cd
Deep tillage NPK 78.44Bc 80.36Bb 79.40Bb 54.03Ab 55.17Aab 54.60Aa
M7.5 85.63Bb 83.49Bb 84.56Bb 41.23Bc 40.33Ab 40.78Bc
M15 93.02Bb 91.00Bb 92.11Bb 50.03Ab 51.69Aab 50.86Abc
M22.5 124.89Aa 125.71Aa 125.30Aa 60.13Aa 59.63Aa 59.88Aa

Table 4

Effects of different tillage and fertilization modes on soil organic matter content g/kg"

耕作方式
Tillage method
处理
Treatment
0~10cm 10~30cm
2018 2019 平均 Mean 2018 2019 平均 Mean
旋耕 CK 13.12Bd 10.89Cd 12.01Bc 4.82Bc 4.91Bc 4.87Bc
Rotary tillage NPK 14.89Bc 15.53Bc 15.21Bb 4.88Bc 5.09Bc 4.99Bc
M7.5 15.12Bc 14.46Bc 14.79Bb 8.90Ab 8.87Ab 8.89Ab
M15 16.12Ab 16.47Bb 16.29Bb 9.39Ab 9.60Ab 9.50Ab
M22.5 18.01Aa 19.79Aa 18.90Aa 11.36Aa 10.78Aa 11.07Aa
深耕 CK 10.13Bd 10.60Cd 10.38Bc 3.01Bc 2.98Bc 2.99Bc
Deep tillage NPK 14.23Ab 15.51Ab 14.87Bb 4.14Bc 3.86Bc 3.99Bc
M7.5 11.08Ac 12.84Bc 11.96Bb 7.03Ab 7.28Ab 7.16Ab
M15 15.01Ab 15.64Aa 15.33Bb 7.50Ab 7.55Ab 7.52Ab
M22.5 16.01Aa 15.84Aa 15.93Aa 9.86Aa 9.99Aa 9.93Aa

Table 5

Effects of different tillage and fertilization modes on nitrogen contents in wheat grains and plants %"

耕作方式
Tillage method
处理
Treatment
籽粒氮Grain nitrogen 植株氮Plant nitrogen
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 1.83b 1.91b 1.87b 0.61c 0.57c 0.59b
Rotary tillage NPK 2.01ab 2.11ab 2.06a 0.67bc 0.69b 0.68b
M7.5 2.15a 2.11ab 2.13a 0.66b 0.68b 0.67b
M15 2.17a 2.16a 2.16a 0.77a 0.75ab 0.76ab
M22.5 2.19a 2.17a 2.18a 0.80a 0.82a 0.81a
深耕 CK 1.78b 1.96b 1.87b 0.60b 0.58c 0.59b
Deep tillage NPK 1.99b 2.09b 2.04ab 0.63ab 0.65ab 0.64a
M7.5 2.11ab 2.17a 2.14a 0.60b 0.62b 0.61a
M15 2.12ab 2.18a 2.15a 0.65a 0.61b 0.63a
M22.5 2.17a 2.21a 2.19a 0.69a 0.69a 0.69a

Table 6

Effects of different tillage and fertilization modes on phosphorus contents in wheat grains and plants %"

耕作方式
Tillage method
处理
Treatment
籽粒磷Grain phosphorus 植株磷Plant phosphorus
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 0.63c 0.61c 0.62b 0.21c 0.19c 0.20c
Rotary tillage NPK 0.71b 0.75ab 0.73ab 0.26a 0.28ab 0.27ab
M7.5 0.76a 0.78a 0.77a 0.27a 0.31a 0.29a
M15 0.74ab 0.70b 0.72ab 0.24b 0.23b 0.24ab
M22.5 0.70b 0.68b 0.69b 0.23b 0.21b 0.22b
深耕 CK 0.63b 0.61b 0.62b 0.19c 0.21b 0.20b
Deep tillage NPK 0.70ab 0.72a 0.71a 0.21b 0.22b 0.21b
M7.5 0.65b 0.64b 0.64b 0.24b 0.23ab 0.23ab
M15 0.72a 0.73a 0.73a 0.26a 0.25a 0.25a
M22.5 0.66b 0.61b 0.64b 0.21b 0.21b 0.21b

Table 7

Effects of different tillage and fertilization modes on potassium contents in wheat grains and plants %"

耕作方式
Tillage method
处理
Treatment
籽粒钾Grain potassium 植株钾Plant potassium
2018 2019 平均Mean 2018 2019 平均Mean
旋耕 CK 0.27c 0.28c 0.28b 1.50c 1.48c 1.49c
Rotary tillage NPK 0.36b 0.34b 0.35a 1.58b 1.70b 1.64bc
M7.5 0.38a 0.39a 0.39a 1.59b 1.59c 1.59c
M15 0.38a 0.36b 0.37a 1.94a 1.98a 1.96a
M22.5 0.37a 0.38a 0.37a 1.96a 2.02a 1.99a
深耕 CK 0.27c 0.28c 0.28b 1.48c 1.52c 1.50b
Deep tillage NPK 0.36a 0.33b 0.35a 1.53c 1.55c 1.54b
M7.5 0.34b 0.31b 0.33a 1.76b 1.74b 1.75ab
M15 0.38a 0.41a 0.39a 1.98a 1.96a 1.97a
M22.5 0.38a 0.39ab 0.38a 1.89b 1.83b 1.86a

Table 8

Effects of different tillage and fertilization modes on nitrogen content in wheat grains and plants"

年份
Year
处理
Treatment
旋耕Rotary tillage 深耕Deep tillage
产量
Yield
(kg/hm2)
穗数
Spike number
(×104/hm2)
穗粒数
Spike grain
number
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
穗数
Spike number
(×104/hm2)
穗粒数
Spike grain
number
千粒重
1000-grain
weight (g)
2018 CK 4 292.12Cc 425.82Cd 22.53Cc 43.22Bc 5 460.32Dd 420.81Bc 30.87Bc 36.67Ab
NPK 6 968.23Bb 590.61Bc 27.42Aa 46.08Ab 6 885.01Cc 498.52Bb 35.08Ab 40.82Aa
M7.5 6 996.36Bb 609.53Ab 24.67Ab 43.21Abc 7 575.35Bb 502.53Bb 37.77Aa 36.67Ab
M15 7 639.81Aa 644.34Ab 29.64Aa 47.84Aa 8 055.56Aa 558.39Aa 38.51Aa 40.13Aa
M22.5 7 124.53Bb 691.08Aa 26.83Aab 48.23Aa 7 890.29Bb 575.86Aa 35.53Ab 35.74Bc
2019 CK 5 327.16Cd 348.34Cc 27.21Cc 32.63Bc 5 329.31Cd 393.38Cc 32.33Bd 39.84Bc
NPK 7 099.35Bc 483.33Cc 36.33Ab 44.82Ab 6 876.16Cc 521.07Bb 34.84Bc 41.34Ab
M7.5 7 510.32Bb 501.56Bb 36.44Ab 42.56Abc 7 965.46Bb 503.15Bb 39.12Aa 41.33AB
M15 7 896.65Aa 606.61Aa 37.08Aa 46.73Aa 8 115.38Aa 543.43Aa 39.81Aa 44.56Aa
M22.5 7 982.38Aa 553.34Bb 36.09Aa 43.56Ab 7 740.24Bb 563.16Aa 38.45Ab 42.91Aa

Fig.1

Effects of organic fertilizer rate on wheat yield"

[1] 张黛静, 王艳杰, 陈倩青 , 等. 不同耕作与培肥对小麦氮吸收效率、根效率及产量的影响. 河南师范大学学报(自然科学版), 2018,46(5):85-91.
[2] 杜娟娟, 李粉婵 . 不同灌水及施肥措施对冬小麦生长及产量影响的试验研究. 灌溉排水学报, 2017,36(9):30-34.
[3] 姚成胜, 滕毅, 黄琳 . 中国粮食安全评价指标体系构建及实证分析. 农业工程学报, 2015,31(4):1-10.
[4] Wu T, Schoenau J J, Li F , et al. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil and Tillage Research, 2004,77:59-68.
doi: 10.1016/j.still.2003.10.002
[5] 张黛静, 王艳杰, 陈倩青 , 等. 不同耕作方式与增施有机肥对麦田土壤有机碳库及小麦产量的影响. 江苏农业科学, 2019,47(11):128-133.
[6] 宫亮, 安景文, 邢月华 , 等. 连年深松和施用有机肥对土壤肥力及玉米产量的影响. 土壤, 2016,48(6):1092-1099.
[7] 乔云发, 苗淑杰, 陆欣春 , 等. 耕作方式和有机肥对风沙土区玉米产量的影响. 安徽农业科学, 2018,46(4):124-127.
[8] LAL R . Soil carbon sequestration to mitigate climate change. Geoderma, 2004,123:1-22.
doi: 10.1016/j.geoderma.2004.01.032
[9] 王星, 段建军 . 中国西南地区土壤有机碳研究现状与展望. 耕作与栽培, 2016(5):80-82.
[10] Liao Y, Wu W L, Meng F Q , et al. Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences, 2015,12(5):1403-1413.
doi: 10.5194/bg-12-1403-2015
[11] 张影, 刘星, 焦瑞锋 , 等. 生物质炭与有机物料配施的土壤培肥效果及对玉米生长的影响. 中国生态农业学报, 2017,25(9):1287-1297.
[12] 田伟, 胡金霞, 李刚 , 等. 耕作方式与绿肥种植对玉米产量和土壤质量的影响. 江苏农业学报, 2017,33(6):1272-1277.
[13] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2005.
[14] 赵明, 李从锋, 董志强 . 玉米冠层耕层协调优化及其高产高效技术. 作物杂志, 2015(3):70-75.
[15] 任爱霞, 孙敏, 赵维峰 , 等. 夏闲期耕作对旱地小麦土壤水分及植株氮素吸收、运转特性的影响. 应用生态学报, 2013,24(12):3471-3478.
[16] 罗洋, 郑金玉, 郑洪兵 , 等. 不同耕层结构对玉米生长发育的影响. 玉米科学, 2014,22(2):113-116.
[17] 徐月 . 不同耕作方式对土壤理化性质及小麦生长发育的影响. 淄博:山东理工大学, 2014.
[18] Li R, Tao R, Ling N , et al. Chemical,organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field:Implications for soil biological quality. Soil and Tillage Research, 2017,167:30-38.
doi: 10.1016/j.still.2016.11.001
[19] 王碧胜, 蔡典雄, 武雪萍 , 等. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610
[20] 罗盛 . 玉米秸秆还田与耕作方式对花生田土壤质量和花生养分吸收的影响. 长沙:湖南农业大学, 2016.
[21] 李亭亭 . 不同耕作及秸秆还田方式对春玉米产量形成及养分吸收的影响. 沈阳:沈阳农业大学, 2013.
[22] 李忠芳, 徐明岗, 张会民 , 等. 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009,42(7):2407-2414.
[23] 张建军, 樊廷录, 赵刚 , 等. 耕作方式与长期定位施肥对雨养农田冬小麦产量的调控效应. 草业学报, 2018,27(7):175-186.
[24] Franzluebbers A J . Water infiltration and soil structure related to organic natter and its stratification with depth. Soil and Tillage Research, 2002,66:197-205.
doi: 10.1016/S0167-1987(02)00027-2
[25] Fuentes P J, Flury M, Huggins R D . Soil water and nitrogen dynamics in dry-land cropping systems of Washington State,USA. Soil and Tillage Research, 2003,71:33-47.
doi: 10.1016/S0167-1987(02)00161-7
[26] 梁金凤, 齐庆振, 贾小红 , 等. 不同耕作方式对土壤性质与玉米生长的影响研究. 生态环境学报, 2010,19(4):945-950.
[27] 李春喜, 杨杰瑞, 张黛静 , 等. 不同耕作和培肥模式对豫中冬小麦田土壤腐殖质及微生物区系的影响. 生态环境学报, 2014,23(2):183-187.
戴亮, 崔俊涛 . 耕作方式对土壤微生物及土壤固碳能力影响的研究. 科技信息, 2012,1(9):189-190.
[1] Miao Pinggui, Yu Xianfeng, Zhang Xucheng, Fang Yanjie, Hou Huizhi, Wang Hongli, Ma Yifan, Dou Xuecheng. Effects of Vertical Deep Rotary Tillage on Soil Greenhouse Gas Emissions from Potato Farmland [J]. Crops, 2020, 36(3): 109-116.
[2] Zhang Yang, Zhang Wei, Zhao Weijun, Shao Rongfeng, Wang Guan, Xue Dingding, Li Jinmei. Variety Screening and Study of Cultivation Technology for Forage Triticale Varieties Based on Principal Component and Grey Relation Analysis [J]. Crops, 2020, 36(3): 117-124.
[3] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[4] Chai Fangmei, Gao Tiantian, Chai Shouxi, Cheng Hongbo, Song Yali, Lu Qinglin. Effects of Planting Density on Wheat Yield Formation in Different Ecological Regions of Gansu Province [J]. Crops, 2020, 36(3): 154-160.
[5] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[6] Chen Juan, He Jinhong, Liu Jili, Kang Jianhong, Wu Na. Effect of Different Planting Patterns on Starch Formation and Yield of Potato in Semi-Arid Area [J]. Crops, 2020, 36(3): 169-176.
[7] Zhu Yingjie, Liu Fuqi, Zhang Yan, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effect of Nitrogen Treatment on Wheat Yield and Quality in Different Soil Conditions [J]. Crops, 2020, 36(3): 184-190.
[8] Shi Lijuan, Bai Wenbin, Cao Changlin, Gao Peng. Effects of Exogenous Selenium Application on Yield, Grain Selenium Content and Quality in Sorghum [J]. Crops, 2020, 36(3): 191-196.
[9] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[10] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
[11] Duan Junzhi, Qi Xueli, Feng Lili, Zhang Huifang, Sun Yan, Yan Zhaoling, Chen Haiyan, Qi Hongzhi, Fan Wenjie, Yang Cuiping, Liu Yuxia, Ren Yinling, Zhang Jiayuan, Li Ying, Zhuo Wenfei. Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering [J]. Crops, 2020, 36(3): 7-15.
[12] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[13] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[14] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[15] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!