Crops ›› 2020, Vol. 36 ›› Issue (4): 99-106.doi: 10.16035/j.issn.1001-7283.2020.04.014

Previous Articles     Next Articles

The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding

Yuan Wenya1(), Zhao Xiaolei1(), Zhou Xumei2, Wang Lei3, Peng Bo1(), Wang Yi1()   

  1. 1Tianjin Crop Research Institute/Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin 300384, China
    2Dandong Academy of Agricultural Sciences, Fengcheng 118109, Liaoning, China
    3Handan Academy of Agricultural Sciences, Handan 056001, Hebei, China
  • Received:2019-12-05 Revised:2020-01-09 Online:2020-08-15 Published:2020-08-11
  • Contact: Peng Bo,Wang Yi E-mail:ywenya0916@163.com;xiaoleizhao1981@163.com;snbopeng@163.com;wangyishengji@163.com

Abstract:

To accelerate the improvement of waxy maize germplasm resources by molecular marker-assisted selection, waxy maize inbred line Yun 539 and ordinary maize inbred line Chang 7-2 were used. Through DNA sequence analysis, it was found that the wx gene mutation of Yun 539 belongs to wx-D7 mutation. The waxy gene function marker FMD7 was developed based on sequence difference between the two inbred lines and it was identified through phenotypic verification and universal verification. By using the marker FMD7 for molecular marker-assisted selection combined with yield, plant type, and quality trait analysis, six excellent Chang 7-2 improved lines carrying wx gene were identified. The marker FMD7 developed in this study for molecular selection can speed up the process of backcross breeding, improve the breeding efficiency, and provide a material basis for breeding high-yielding waxy maize hybrids. At the same time, it provides a theoretical reference for molecular marker-assisted selection of traits controlled by single gene or a few major genes.

Key words: Maize, Gene, FMD7, Molecular marker-assisted selection

Table 1

Primers for segmental amplification of the waxy gene"

编号
Number
引物名称
Primer name
5′-3′引物序列
5′-3′ primer sequence
退火温度
Annealing temperature (℃)
扩增条带长度
Length of amplify band(bp)
A-F Wxe3-7 GTCTTCTTCGTGCTCTTGCC 57.4 907
A-R GATGCCGTGGGACTGGTAG 58.2
B-F Wxe4-9 GTTGACCACCCACTGTTCCT 56.6 880
B-R ATGAGCTCCTCGGCGTAGTA 57.6
C-F Wxe7-10 AACTACCAGTCCCACGGCATCT 62.4 902
C-R CACGTCCTCCACCATCTCCAT 61.7
D-F Wxe9-13 TGCGAGCTCGACAACATCATGCG 70.9 1 344
D-R AGGGCGCGGCCACGTTCTCC 73.0
E-F Wxe11-14 GAGAAGTTCCCAGGCAAGGT 58.1 931
E-R AGCACAAGCAAGCAGCTACA 57.1

Fig.1

The deletion of 30bp in the 7th exon-7th intron of wx allele gene and the 10th exon sequence in Yun 539"

Table 2

Sequences and annealing temperatures of FMD7"

序号
Number
引物
Primer
5′-3′序列
5′-3′ sequence
退火温度
Annealing
temperature (℃)
1 FMD7-F TACCAGTCCCACGGCATCTA 58.6
2 FMD7-R CACCACCACTACCAGACGAG 55.7

Fig.2

Development of wx function marker of waxy gene in Yun 539"

Table 3

Genotype and phenotype identification of F2 populations"

基因型
Genotype
籽粒数Kernel number X2 P
基因型鉴定
Genotype
identification
表型鉴定
Phenotype
identification
wxwx 54 51 1.696 0.638
Wxwx 86 86
WxWx 47 46
其他Other 3 7

Table 4

Marker analysis of FMDT and waxy property of tested maize materials"

编号Number 自交系Inbred line Wx/wx FMD7
1 昌7-2 Wx -
2 郑58 Wx -
3 w359 wx +
4 w360 wx +
5 云539 wx +
6 云413 wx +
7 98-1329 wx +
8 w441 wx -
9 w272 wx -
10 F002 wx +

Fig.3

Sequence variation of the major mutant sites in 10 maize inbred lines The black dotted box is the mutation site of type wx-D10 and the red implementation box is the 7th exon region"

Table 5

Analysis of variance for yield traits among 6 Chang 7-2 waxy improved families, donors and recurrent parents"

变异来源
Variation source
单株产量
Grain yield
per plant
穗粗
Ear
diameter
穗长
Ear
length
穗行数
Row
number
行粒数
Kernels
per row
秃尖长
Bare tip
length
轴粗
Shaft
diameter
百粒重
100-kernel
weight
出籽率
Rate of
seed
基因型Genotype 597.43** 0.04 0.75 4.57 45.14* 0.88** 0.11* 2.49** 0.59**
重复Repeat 9.00 2.00E-03 0.09 4.00 9.00 0.00 3.00E-03 0.30 9.00E-03
误差Error 66.14 0.11 3.26 4.00 6.71 0.04 0.02 0.34 0.08

Table 6

Performance of six Chang 7-2 waxy improved families, donors and recurrent parents"

编号
Number
单株产量
Grain yield
per plant (g)
穗粗
Ear diameter
(cm)
穗长
Ear length
(cm)
穗行数
Row
number
行粒数
Kernels
per row
秃尖长
Bare tip
length (cm)
轴粗
Cob diameter
(cm)
百粒重
100-kernel
weight (g)
出籽率
Rate of
seed (%)
云539 Yun 539 60.0c 4.5 13.4 14.0 22d 1.5a 2.5ab 22.7bc 77.0b
昌7-2 Chang 7-2 88.0b 4.1 12.0 16.0 31bc 0.0b 2.2bc 22.8bc 88.0a
11 108.5ab 4.4 13.2 16.0 38ab 0.2b 2.4b 23.8ab 83.6ab
18 97.1b 4.3 13.1 16.0 27cd 1.5a 2.8a 24.8a 69.2c
24 119.1a 4.3 14.0 16.0 34ab 0.0b 2.5ab 25.2a 81.3ab
38 102.3ab 4.4 12.5 18.0 28bcd 0.0b 2.3bc 24.6a 79.9b
39 96.4b 4.3 13.5 18.0 30bc 0.0b 2.3bc 22.1c 80.9b
64 95.5b 4.1 13.1 14.0 30bc 0.5b 2.0c 24.0b 81.8ab

Table 7

Variance analysis of plant type traits in six Chang 7-2 waxy improved families, donors and recurrent parents"

变异来源Variation source 株高Plant height 穗位高Ear height 雄穗长Tassel length 雄穗分枝数Tassel branch number 叶夹角Leaf angle
基因型Genotype 243.68** 157.85** 12.25 27.86 28.85**
重复Repeat 6.25 0.56 2.25 0.25 14.06
误差Error 19.39 5.71 3.96 11.68 2.78

Table 8

Plant type traits of six Chang 7-2 waxy improved families, donors and recurrent parents"

编号
Number
株高
Plant height (cm)
穗位高
Ear height (cm)
雄穗长
Tassel length (cm)
雄穗分枝数
Tassel branch number
叶夹角
Leaf angle (°)
云539 Yun 539 155.4b 62.2b 29.3 9.3 29.0a
昌7-2 Chang 7-2 185.4a 87.3a 22.2 19.3 21.0cd
11 184.0a 88.5a 23.3 18.2 18.5d
18 189.2a 88.2a 23.3 21.3 19.5cd
24 186.3a 87.4a 22.1 19.4 17.0d
38 188.3a 87.3a 22.3 19.2 24.5b
39 185.3a 87.5a 23.4 17.2 23.0cd
64 183.1a 83.0a 21.1 20.1 21.0cd
[1] Klösgen R B, Gierl A, Zsuzsanna S , et al. Molecular analysis of the waxy locus of Zea mays. Molecular and General Genetics, 1986,203(2):237-244.
[2] Nelson O E, Rines H W . The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications, 1962,9:297-300.
[3] Liu F S, Makhmoudova A, Lee E A , et al. The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. Journal of Experimental Botany, 2009,60(15):4423-4440.
[4] Wessler S R, Baran G, Varagona M , et al. Excision of Ds produces waxy proteins with a range of enzymatic activities. The EMBO Journal, 1986,5(10):2427-2432.
[5] 李余良, 索海翠 . 鲜食玉米胚乳突变基因及其分子育种研究进展. 中国农学通报, 2019,35(19):21-27.
[6] 刘坚 . 中国糯玉米多样性中心及胚乳突变型基因内分子标记策略研究. 雅安:四川农业大学, 2007.
[7] 宁洽, 刘文国, 杨伟光 , 等. SNP标记在玉米研究上的应用进展. 玉米科学, 2017,25(1):57-60.
[8] 从春生, 李永祥, 李春辉 , 等. 分子标记辅助选择玉米杂种后代创新种质方法研究. 中国农业科学, 2016,49(20):3874-3885.
[9] Bonnecarrere V, Rosas J, Ferraro B . Economic impact of marker-assisted selection and rapid generation advance on breeding programs. Euphytica, 2019,215(12):197-215.
[10] Sarankumar C, Bharathi P, Karthikeyan A , et al. Marker-assisted selection to pyramid the opaque-2 (O2) and β-Carotene (crtRB1) genes in maize. Frontiers in Genetics, 2019,10:859.
[11] Francia E, Tacconi G, Crosatti C , et al. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture, 2005,82(3):317-342.
[12] 刘纪麟 . 玉米育种的策略. 玉米科学, 2003(S2):54-57.
[13] 宋同明 . 糯玉米与WX基因. 玉米科学, 1993,1(2):1-2,25.
[14] 徐春艳, 陈亭亭, 李松 , 等. 糯玉米waxy基因序列特征分析及分子标记开发. 分子植物育种, 2015,13(3):531-540.
[15] Lyons J B . Irish medicine's appeal to Rockefeller. 1920s. Irish Journal of Medical Science, 1997,166(1):50-56.
[16] Munroe D J . IRS-bubble PCR:an effective method for representative amplification of human genomic DNA sequences from complex sources. Methods:A Companion to Methods in Enzymology, 1996,9(1):106-112.
[17] Yandell D W, Dryja T P, Little J B . Molecular genetic analysis of recessive mutations at a heterozygous autosomal locus in human cells. Mutation Research, 1990,229(1):89-102.
[18] Vanessa D, Maselli R A . Common founder effect of rapsyn N88K studied using intragenic markers. Journal of Human Genetics, 2004,49(7):366-369.
[19] Yahiaoui N, Srichumpa P, Dudler R , et al. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. The Plant Journal, 2004,37(4):528-538.
[20] Tommasini L, Yahiaoui N, Srichumpa P , et al. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theoretical and Applied Genetics, 2006,114(1):165-175.
[21] 王洪振, 包朝亚, 程军 , 等. 玉米中功能标记的开发与应用研究进展. 分子植物育种, 2016,14(9):2460-2465.
[22] 陈秀华, 于丽娟, 罗黎明 , 等. 玉米分子标记辅助育种及标记开发研究进展. 中国农业科技导报, 2016,18(1):26-31.
[23] 卢振宇, 李明顺, 谢传晓 , 等. 玉米叶片DNA快速提取方法改进研究. 玉米科学, 2008,16(2):50-53,55.
[24] Nadia A A, Hanaa A O . Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Aboul-Maaty and Oraby Bulletin of the National Research Centre, 2019,43(1):43-25.
[25] 刘坚 . 玉米分离群体中糯质基因(waxy)和超甜基因(shrunken-2)基因的特异PCR鉴定. 雅安:四川农业大学, 2004.
[26] 彭勃, 赵晓雷, 付从贵 , 等. 玉米胚乳DNA的快速提取方法及其在wx基因分子标记辅助选择中的应用. 分子植物育种, 2014,12(5):992-999.
[27] 石云素 . 玉米种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 14-23.
[28] 姚坚强, 鲍坚东, 朱金庆 , 等. 中国糯玉米wx基因种质资源遗传多样性. 作物学报, 2013,39(1):43-49.
[29] Fan L J, Quan L Y, Leng X D , et al. Molecular evidence for post-domestication selection in the waxy gene of Chinese waxy maize. Molecular Breeding, 2008(3):329-338.
[1] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[2] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[3] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[4] Liu Dongjun, Song Weifu, Yang Xuefeng, Zhao Lijuan, Song Qingjie, Zhang Chunli, Xin Wenli, Xiao Zhimin. Progress of Wheat Fhb1 Gene Locating and Cloning and Its Utilization in the Resistance Breeding [J]. Crops, 2020, 36(4): 16-20.
[5] Gong Dan, Wang Suhua, Cheng Xuzhen, Wang Lixia. Construction of SSR Fingerprints and Diversity Analysis of a Cowpea Applied Core Collection [J]. Crops, 2020, 36(4): 79-83.
[6] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[7] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[8] Meng Feng, Zhang Yaling, Jin Xuehui. Detection of Avirulence Genes of Magnaporthe oryzea in Heilongjiang Province [J]. Crops, 2020, 36(3): 197-200.
[9] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[10] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
[11] Duan Junzhi, Qi Xueli, Feng Lili, Zhang Huifang, Sun Yan, Yan Zhaoling, Chen Haiyan, Qi Hongzhi, Fan Wenjie, Yang Cuiping, Liu Yuxia, Ren Yinling, Zhang Jiayuan, Li Ying, Zhuo Wenfei. Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering [J]. Crops, 2020, 36(3): 7-15.
[12] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[13] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[14] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[15] Zhang Xiaoyu,Zhang Yaling,Jin Xuehui,Yan Tianyu,Zhao Ze. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!