Crops ›› 2021, Vol. 37 ›› Issue (2): 160-164.doi: 10.16035/j.issn.1001-7283.2021.02.023

Previous Articles     Next Articles

Effects of Three Growth Regulators on the Growth of Potato Test-Tube Seedlings

Qiu Tian1(), Niu Lili2, Zhu Jiang2, Cai Fuge2, Wang Qingwei2   

  1. 1College of Agriculture, Anshun University, Anshun 561000, Guizhou, China
    2Anshun Academy of Agricultural Sciences, Anshun 561000, Guizhou, China
  • Received:2020-06-07 Revised:2020-07-06 Online:2021-04-15 Published:2021-04-16

Abstract:

To improve the quality of test-tube seedlings and optimize the virus-free subculture of potato, Yanshu No. 4 virus-free seedlings were used as the test material, and 6-BA (0.5mg/L, 1.0mg/L, 1.5mg/L), salicylic acid (0.2mg/L, 0.4mg/L, 0.6mg/L) and brassinolide (0.01mg/L, 0.10mg/L, 1.00mg/L) was selected as the treatments, while, no growth regulator was added in control. The growth morphological characteristics, chlorophyll content, root vitality, survival rate and tuber formation characteristics of three growth regulators on potato test-tube seedlings were studied. The results showed the three growth regulators could increase plant height, stem diameter, fresh weight, average root length, root strip number and leaf number. In addition, the chlorophyll content, root vitality, survival rate and tuber formation characteristics after transplanting were all better under the treatment of 6-BA, salicylic acid and brassinolide are 1.0mg/L, 0.4mg/L and 1.0mg/L, respectively. After transplanting, the survival rate was the highest, and the tuber formation characteristics were better under the treatment of salicylic acid (0.4mg/L), which is the most suitable medium for strong seedlings.

Key words: Potato, Growth regulator, Test-tube seedling

Table 1

Type and concentration of growth regulators in each treatment"

编号
Number
生长调节剂
Growth regulator
浓度
Concentration (mg/L)
pH
CK - - 5.8
A1 6-BA 0.5 5.8
A2 1.0 5.8
A3 1.5 5.8
B1 SA 0.2 5.8
B2 0.4 5.8
B3 0.6 5.8
C1 BR 0.01 5.8
C2 0.10 5.8
C3 1.00 5.8

Table 2

Effects of three growth regulators on the growth of potato test-tube seedlings"

处理
Treatment
株高
Plant height (mm)
茎粗
Stem diameter (mm)
鲜重
Fresh weight (g)
平均根长
Average root length (mm)
根条数
Number of roots
叶片数
Number of leaves
CK 56.73±1.74e 0.75±0.02def 0.09±0.002de 26.87±1.48f 4.43±0.37f 6.45±0.20c
A1 63.81±1.94d 0.78±0.01cd 0.11±0.002c 34.94±2.09de 5.58±0.15e 8.11±0.20b
A2 75.05±1.93b 0.83±0.02ab 0.14±0.006b 49.43±2.97b 8.19±0.49b 9.24±0.02a
A3 54.73±1.20ef 0.77±0.02de 0.09±0.004de 28.08±1.36d 6.83±0.08d 6.45±0.39c
B1 67.96±1.85c 0.77±0.03de 0.12±0.003c 38.60±2.83cd 7.04±0.09d 6.67±0.25c
B2 85.74±2.63a 0.85±0.03a 0.16±0.009a 59.71±3.64a 10.97±0.52a 8.61±0.31b
B3 52.36±1.66f 0.74±0.02ef 0.09±0.004e 41.66±2.81c 7.60±0.22c 5.69±0.43d
C1 53.20±1.80f 0.73±0.02f 0.09±0.005e 32.95±2.32e 5.58±0.34e 5.71±0.54d
C2 57.44±2.34e 0.77±0.02de 0.10±0.006d 41.20±2.42c 6.66±0.26d 6.88±0.61c
C3 64.81±2.29cd 0.81±0.02bc 0.12±0.006c 61.46±3.06a 8.47±0.17b 8.06±0.05b

Fig.1

The effects of three growth regulators on the chlorophyll content of potato test-tube seedlings Different lowercase letters indicate difference at 0.05 level, the same below"

Fig.2

The effects of three growth regulators on the root vitality of potato test-tube seedlings"

Table 3

Effects of three growth regulators on the survival rate of potato test-tube seedlings and tuber formation characteristics after transplanting"

处理
Treatment
平均成活率
Average survival rate (%)
单株结薯数
Number of tubers per plant
单株结薯重
Potato weight per plant (g)
大薯率
Percentage of big-tuber (%)
CK 37.01±1.65f 0.98±0.04c 0.49±0.02f 0.00±0.00e
A1 41.22±1.81ef 0.98±0.06c 0.51±0.03f 9.58±1.05ab
A2 73.59±5.62bc 1.22±0.04b 0.73±0.05e 8.40±0.67bc
A3 52.55±4.72d 1.03±0.05c 0.92±0.05b 5.60±0.53d
B1 67.69±4.08c 1.04±0.07c 0.85±0.04c 6.14±0.64d
B2 85.77±2.90a 1.32±0.04a 1.09±0.04a 6.04±0.05d
B3 30.43±4.27g 0.86±0.07d 0.42±0.02g 10.31±1.15a
C1 46.24±2.27e 1.06±0.06c 0.52±0.04f 10.26±1.33a
C2 55.87±3.57d 1.16±0.05b 0.75±0.05de 7.77±0.33c
C3 77.03±2.36b 1.38±0.02a 0.79±0.02cd 8.76±0.12bc
[1] 侯慧芝, 王娟, 张绪成, 等. 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41(10):1582-1590.
[2] 王兴文, 侯贤清, 李文芸, 等. 旱作区环保型材料覆盖对马铃薯生长的影响及其降解特性. 干旱地区农业研究, 2018,36(3):86-92,112.
[3] 毛玮, 王英, 金建钧, 等. 马铃薯茎尖脱毒技术体系的研究进展. 安徽农业科学, 2009,37(33):16257-16260.
[4] 李方, 陈昆松. B9和PP33对马铃薯试管苗生长的影响. 浙江农业学报, 2001,13(2):67-71.
[5] 艾辛, 夏志兰, 刘明月, 等. 植物生长调节剂对马铃薯试管苗生长和保存的影响. 湖南农业大学学报(自然科学版), 2005,31(5):514-517.
[6] 闫冲冲, 江芹, 王前前, 等. 不同生长调节剂配比对'皖马铃薯1号'和'皖马铃薯2号'试管苗生长的影响. 安徽农业大学学报, 2019,46(3):515-520.
[7] 马爽. 植物生长调节剂对马铃薯试管苗的影响. 黑龙江农业科学, 2017(8):4-7.
[8] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[9] 白宝璋, 金锦子. 玉米根系活力TTC测定法的改良. 玉米科学, 1994,2(4):44-47.
[10] 李玉巧, 朱鹿鸣. PP333、GA3和BA对马铃薯试管苗生长调节作用的研究. 作物学报, 1994,20(1):59-66.
[11] 赵克蓉. 植物生长调节剂控制马铃薯试管苗徒长的作用. 中国马铃薯, 2000(3):150-152.
[12] 杨澜, 王爱华, 石乐娟, 等. 不同基因型兰花组培苗对植物生长调节剂的响应. 分子植物育种, 2019,17(2):257-263.
[13] 李胜, 李唯, 杨德龙, 等. 不同光质对葡萄试管苗根系生长的影响. 园艺学报, 2005,32(5):872-874.
[14] 卜朝阳, 董伟清, 闭志强, 等. 蝴蝶兰克隆苗根系生长影响因素研究. 西南农业学报, 2009,22(6):1737-1740.
[15] 杨喜珍. 不同马铃薯品种试管薯苗对植物生长调节剂的响应及应用技术研究. 西安:西北农林科技大学, 2016.
[1] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[2] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[3] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[4] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[5] Zhai Xinna, Yang Jiawei, Xu Chunjiang, Qi Lipan, Tian Zaimin, Feng Yan, Yin Jiang, Gong Xuechen. Effects of Grafting on Interspecific Hybridization Compatibility of Potato and Its Physiological Regulation Mechanism [J]. Crops, 2023, 39(4): 182-187.
[6] Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker-Assisted Screening of Potato Germplasm Resources for Virus Resistance [J]. Crops, 2023, 39(4): 65-70.
[7] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[8] Jia Zhengrong, Hao Jiali, Hao Yanfang, Bai Wenbin, Zhang Jianhua, Guo Ruifeng, Liu Yong. Effects of Four Bacillus Species on Yield and Quality of Sweet Potato at Different Stages [J]. Crops, 2023, 39(1): 170-175.
[9] Liu Sujun, Meng Meilian, Suriguga . Research on the Effects of Gene Expression in Sugar Metabolism Pathway of Potato by Drought Stress and Rehydration [J]. Crops, 2023, 39(1): 38-45.
[10] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[11] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[12] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[13] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[14] Chen Yuzhen, Tang Guangbin, Ma Xianxin, Tian Guiyun, Yu Hongxin, Luo Yingluo, Fan Mingshou, Jia Liguo. Four Major Regulatory Pathways of Potato Tuber Development [J]. Crops, 2022, 38(4): 9-13.
[15] Liu Ju, Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei. The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato [J]. Crops, 2022, 38(3): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!