Crops ›› 2021, Vol. 37 ›› Issue (3): 167-172.doi: 10.16035/j.issn.1001-7283.2021.03.025

Previous Articles     Next Articles

Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China

Meng Xiangyu(), Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu()   

  1. College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2020-06-27 Revised:2020-07-30 Online:2021-06-15 Published:2021-06-22
  • Contact: Geng Yanqiu E-mail:mxy_enactus@163.com;ccgyq@163.com

Abstract:

The study was conducted to explore the effects of different nitrogen fertilizer application rates on soil nutrients and yields in black soil rice areas of Northeast China under the condition of returning straw to the field. Jijing 816 was used as the test material and a two-factor split zone design was adopted. The main zone was full return of straw to the field (S) and no straw returned to the field (S0). The split area included five nitrogen fertilizer application rates 0 (N0), 80 (N1), 160 (N2), 240(N3), and 320kg/ha (N4), no straw and no nitrogen fertilizer (N0S0) was used as control. The results showed that all nitrogen fertilizer treatments significantly affected soil bulk density and porosity, improved soil aeration, significantly increased the contents of soil nutrients, and increased rice biological yield under the condition of fully returning straw to the field (S); the harvest index was N3S>N2S>N1S>N0S0>N0S>N4S,and the harvest index of N3S treatment was significantly higher than that of N4S. With the increase of nitrogen application rate, rice yield increased first and then decreased. The treatment with the highest yield was N3 treatment, and N3S>N3S0. The performance of the combination of returning the whole amount of straw to the field and applying nitrogen fertilizer 240kg/ha (N3) is the best.

Key words: Rice, Straw returning, Nitrogen fertilizer, Soil nutrients, Yield

Table 1

Basic physical and chemical properties of the tested soil"

容重
Soil bulk density (g/cm3)
全氮
Total nitrogen
(g/kg)
全磷
Total phosphorus (g/kg)
全钾
Total potassium
(g/kg)
碱解氮
Alkaline nitrogen
(mg/kg)
速效磷
Available phosphorus (mg/kg)
速效钾
Quick-acting potassium (mg/kg)
有机质
Organic matter
(g/kg)
pH
1.31 0.92 0.77 18.91 166.84 14.20 69.11 25..23 5.47

Table 2

Effects of straw returning and nitrogen application on soil bulk density, porosity and pH"

处理
Treatment
土壤容重
Soil bulk density (g/cm3)
孔隙度
Porosity (%)
pH
N0S 1.23±0.04b 53.58±0.79a 5.43±0.02a
N1S 1.25±0.07b 52.83±0.58a 5.42±0.05a
N2S 1.24±0.06b 53.21±0.44a 5.39±0.03a
N3S 1.24±0.02b 53.21±0.03a 5.37±0.05a
N4S 1.26±0.10b 52.45±0.32a 5.36±0.03a
N0S0 1.39±0.22a 47.55±0.43c 5.51±0.03a
N1S0 1.34±0.13a 49.43±0.32b 5.48±0.05a
N2S0 1.35±0.15a 49.06±0.15b 5.43±0.06a
N3S0 1.32±0.03a 50.19±0.03b 5.41±0.06a
N4S0 1.33±0.12a 49.81±0.27b 5.37±0.06a
S * * ns
N ns ns ns
N×S * * ns

Table 3

Effects of straw returning to field and nitrogen application on the total nutrients content in soil g/kg"

处理
Treatment
全氮
Total
nitrogen
全磷
Total
phosphorus
全钾
Total
potassium
有机质
Organic
matter
N0S 0.99±0.03b 0.81±0.03c 18.63±0.17d 26.86±0.03a
N1S 1.03±0.01ab 0.84±0.05bc 18.74±0.16cd 26.88±0.05a
N2S 1.07±0.02ab 0.86±0.04b 18.92±0.15b 26.97±0.02a
N3S 1.09±0.02ab 0.93±0.05a 19.73±0.46a 27.03±0.37a
N4S 1.12±0.07a 0.87±0.05b 18.93±0.25b 26.98±0.04a
N0S0 0.89±0.02c 0.75±0.03c 18.35±0.21d 26.72±0.01b
N1S0 0.91±0.01bc 0.79±0.04c 18.32±0.45d 26.18±0.21b
N2S0 0.93±0.04bc 0.82±0.07bc 18.45±0.21d 26.14±0.51b
N3S0 1.01±0.01ab 0.82±0.03c 18.65±0.21d 26.12±0.21b
N4S0 1.13±0.03a 0.80±0.04c 18.68±0.13d 26.09±0.24b
S * * * *
N * ns ns ns
N×S * * * *

Table 4

The effects of straw returning to field and nitrogen application on the content of available nutrients in soil mg/kg"

处理
Treatment
碱解氮
Alkaline
nitrogen
速效磷
Available
phosphorus
速效钾
Quick-acting
potassium
N0S 155.87±1.45f 16.04±0.54e 67.89±0.86d
N1S 157.69±1.43de 16.56±0.24d 70.35±1.71c
N2S 161.03±0.93c 17.03±0.22c 80.22±1.98b
N3S 173.81±1.64b 17.67±0.57b 83.44±1.88a
N4S 181.33±0.68a 18.89±0.36a 80.63±1.80b
N0S0 155.42±0.82f 15.92±0.41e 65.23±1.73d
N1S0 157.31±1.42de 15.87±0.32e 66.31±1.23d
N2S0 158.81±1.64cd 15.62±0.26e 66.22±1.04d
N3S0 160.33±0.82c 15.50±0.54e 66.18±1.73d
N4S0 172.86±0.73b 15.23±0.31e 66.53±0.98d
S * * *
N * ns ns
N×S * * *

Table 5

The effects of straw returning to field and nitrogen application on rice biological yield and harvest index"

处理
Treatment
生物产量
Biological yield (t/hm2)
收获指数
Harvest index (%)
N0S 19.11±0.78c 44.74±0.98b
N1S 19.93±0.68bc 45.06±0.82ab
N2S 21.13±0.97b 46.28±0.99a
N3S 22.69±0.89a 47.29±1.40a
N4S 22.85±0.37a 39.87±0.78c
N0S0 18.57±0.81c 45.02±0.79ab
N1S0 19.64±0.27bc 44.04±0.83b
N2S0 20.45±0.74b 44.89±0.93b
N3S0 20.53±0.97b 45.06±0.99ab
N4S0 22.64±0.73a 39.84±0.96c
S * ns
N * ns
N×S * ns

Table 6

Effects of straw returning and nitrogen application on rice yield and yield components"

处理
Treatment
穗数
Ear number (×104/hm2)
穗粒数
Number of spikes
千粒重
1000-grain weight (g)
结实率
Seed set rate (%)
实测产量
Actual yield (t/hm2)
N0S 322.13±10.14a 138.18±4.21a 25.22±0.17a 88.34±2.14a 8.55±0.12c
N1S 327.79±9.82a 140.12±3.34a 25.62±0.33a 90.38±3.19a 8.98±0.23c
N2S 330.15±10.13a 142.25±4.27a 25.55±0.27a 89.03±1.71a 9.78±0.13b
N3S 340.57±30.21a 143.92±6.78a 26.91±0.32a 89.99±2.00a 10.73±0.40a
N4S 346.78±16.33a 139.28±5.37a 25.96±0.15a 87.21±1.33a 9.11±0.08bc
N0S0 318.21±9.43ab 132.11±5.43a 25.12±0.27a 88.35±2.35a 8.36±0.22c
N1S0 320.33±10.01a 132.50±5.22a 25.55±0.20a 88.99±2.00a 8.65±0.25c
N2S0 321.34±9.73a 134.43±6.24a 25.47±0.12a 88.91±1.31a 9.18±0.23bc
N3S0 326.78±26.33a 139.28±5.37a 25.61±0.15a 87.91±1.51a 9.25±0.48b
N4S0 338.74±8.49a 134.23±5.12a 25.91±0.32a 87.02±1.36a 9.02±0.11bc
S ns ns ns ns *
N ns ns ns ns *
N×S ns ns ns ns *
[1] 毕于运, 高春雨, 王亚静 , 等. 中国秸秆资源数量估算. 农业工程学报, 2009,2(12):211-217.
[2] 宋大利, 侯胜鹏, 王秀斌 , 等. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018,24(1):1-21.
[3] 王金武, 唐汉, 王金峰 . 东北地区作物秸秆资源综合利用现状与发展分析. 农业机械学报, 2017,48(5):1-21.
[4] 花劲, 周年兵, 张军 , 等. 双季晚稻甬优系列籼粳杂交稻超高产结构与群体形成特征. 中国农业科学, 2015,48(5):1023-1034.
[5] 国家统计局. 2019中国统计年鉴. 北京: 中国统计出版社, 2019.
[6] Shan J, Yan X . Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013,71:170-175.
doi: 10.1016/j.atmosenv.2013.02.009
[7] Hu N, Wang B, Gu Z , et al. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agriculture,Ecosystems and Environment, 2016,223:115-122.
doi: 10.1016/j.agee.2016.02.027
[8] 魏显珍, 赵斌, 武晓燕 , 等. 不同盐度下施氮量对甜菜生长发育及氮素吸收利用特性的影响. 干旱地区农业研究, 2017,35(3):204-211.
[9] 马永良, 师宏奎, 张书奎 , 等. 玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响. 中国农业大学学报, 2003(S1):42-46.
[10] 杨林章, 王德建, 夏立忠 . 太湖地区农业面源污染特征及控制途径. 中国水利, 2004(20):29-30,5.
[11] 李志国, 曾华, 聂新星 , 等. 施用不同氮、磷、钾肥和有机肥对‘红阳’猕猴桃生长及产量的影响. 植物科学学报, 2015,33(1):98-108.
[12] 张凯, 陈年来, 顾群英 . 不同水氮水平下小麦品种对光、水和氮利用效率的权衡. 应用生态学报, 2016,27(7):2273-2282.
[13] Yong Z, Dong Y, Zhang X , et al. Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 2015,78:527-530.
doi: 10.1016/j.renene.2015.01.033
[14] Chandra R, Takeuchi H, Hasegawa T . Methane production from lignocellulosic agricultural crop wastes:A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012,16(3):1462-1476.
doi: 10.1016/j.rser.2011.11.035
[15] 王鹏, 曾玲玲, 王发鹏 , 等. 秸秆还田对烤烟氮积累、分配及利用的影响. 中国土壤与肥料, 2008(4):43-46.
[16] 张国娟, 濮晓珍, 张鹏鹏 , 等. 干旱区棉花秸秆还田和施肥对土壤氮素有效性及根系生物量的影响. 中国农业科学, 2017,50(13):2624-2634.
[17] 吴涌泉, 屈明, 孙芬 , 等. 秸秆覆盖对土壤理化性状、微生物及生态环境的影响. 中国农学通报, 2009,25(14):263-268.
[18] 严奉君, 孙永健, 马均 , 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015,21(1):23-35.
[19] 陈新红, 叶玉秀, 许仁良 , 等. 小麦秸秆还田量对水稻产量和品质的影响. 作物杂志, 2009(1):54-57.
[20] 徐国伟, 谈桂露, 王志琴 , 等. 秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响. 中国农业科学, 2009,42(8):2736-2746.
[21] 刘书田, 窦森, 侯彦林 , 等. 中国秸秆还田面积与土壤有机碳含量的关系. 吉林农业大学学报, 2016,38(6):723-732,738.
[22] 鲍士旦 . 土壤农业化学分析方法. 第3版. 北京: 中国农业出版社, 2000.
[23] 刘公崧 . 土壤理化分析与剖面描述. 北京: 中国标准出版社, 1996:31-37.
[24] 陈立新 . 土壤实验实习教程. 哈尔滨: 东北林业大学出版社, 2005:17-50.
[25] 马祥华, 焦菊英, 温仲明 , 等. 黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究. 水土保持研究, 2005(1):17-21.
[26] 董桂军, 陈兴良, 于洪娇 , 等. 寒区长期秸秆全量还田对水稻土理化特性的影响. 土壤与作物, 2019,8(3):251-257.
[27] 程曼, 解文艳, 杨振兴 , 等. 黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响. 中国生态农业学报(中英文), 2019,27(10):1528-1536.
[28] 温美娟, 王成宝, 霍琳 , 等. 深松和秸秆还田对甘肃引黄灌区土壤物理性状和玉米生产的影响. 应用生态学报, 2019,30(1):224-232.
[29] 徐国鑫, 王子芳, 高明 , 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响. 环境科学, 2018,39(1):355-362.
[30] 吕世丽, 李新平, 李文斌 , 等. 牛背梁自然保护区不同海拔高度森林土壤养分特征分析. 西北农林科技大学学报(自然科学版), 2013,41(4):161-168,177.
[31] 吕超群, 田汉勤, 黄耀 . 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 2007(2):205-218.
doi: 10.17521/cjpe.2007.0025
[32] 翟朝阳, 邱娟, 司洪章 , 等. 微地形对大西沟新疆野杏萌发层土壤因子的影响. 生态学报, 2019,39(6):2168-2179.
[33] 梁金凤, 齐庆振, 贾小红 , 等. 不同耕作方式对土壤性质与玉米生长的影响研究. 生态环境学报, 2010,19(4):945-950.
[34] Ren W J, Liu D Y, Wu J X , et al. Effects of returning straw to soil and different tillage methods on paddy field soil fertility and microbial population. Chinese Journal of Applied Ecology, 2009,20(4):817-822.
[35] 吴立鹏, 张士荣, 娄金华 , 等. 秸秆还田与优化施氮对稻田土壤碳氮含量及产量的影响. 华北农学报, 2019,34(4):158-166.
[36] 冯晓赟, 万鹏, 李洁 , 等. 秸秆还田与氮肥配施对中南地区稻田土壤固碳和温室气体排放的影响. 农业资源与环境学报, 2016,33(6):508-517.
[37] 高洋, 王根绪, 高永恒 . 长江源区高寒草地土壤有机质和氮磷含量的分布特征. 草业科学, 2015,32(10):1548-1554.
[38] Hu H X, Wang Y F, Chen Z , et al. Effects of straw return with chemical fertilizer on nitrogen and phosphorus leaching from yellow cinnamon soil. Journal of Soil and Water Conservation, 2015,29(5):101-105.
[39] Dolan M S, Clapp C E, Allmaras R R , et al. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage,residue and nitrogen management. Soil and Tillage Research, 2006,89(2):221-231.
doi: 10.1016/j.still.2005.07.015
[40] 仇少君, 彭佩钦, 刘强 , 等. 土壤微生物生物量氮及其在氮素循环中作用. 生态学杂志, 2006(4):443-448.
[41] 刘凡, 介晓磊, 贺纪正 , 等. 不同pH条件下针铁矿表面磷的配位形式及转化特点. 土壤学报, 1997(4):367-374.
[42] 袁嫚嫚, 邬刚, 胡润 , 等. 稻油轮作下秸秆还田配施化肥对作物产量及肥料利用率的影响. 生态学杂志, 2018,37(12):3597-3604.
[43] 陈浩, 张秀英, 吴玉红 , 等. 秸秆还田与氮肥管理对稻田杂草群落和水稻产量的影响. 农业资源与环境学报, 2018,35(6):500-507.
[44] 张哲, 孙占祥, 张燕卿 , 等. 秸秆还田与氮肥配施对春玉米产量及水分利用效率的影响. 干旱地区农业研究, 2016,34(3):144-152.
[45] 成臣, 汪建军, 程慧煌 , 等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响. 土壤学报, 2018,55(1):247-257.
[46] 隋阳辉, 高继平, 刘彩虹 , 等. 东北冷凉地区秸秆还田方式对水稻光合、干物质积累及氮素吸收的影响. 作物杂志, 2018(5):137-143.
[1] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[2] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
[3] Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158.
[4] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[5] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[6] Ling Chen, Liu Hong, Yang Zhe, Huang Zhanquan, Chen Mengqiang, Rao Dehua, Xu Zhenjiang. Effects of Double-Cropping Rice Cultivation on the Expression of Quantitative Characteristics of Rice DUS Testing Example Varieties [J]. Crops, 2021, 37(4): 18-25.
[7] Wang Zhihua, Zhang Lingyun, Wei Lixing. Comparison Test of Different Triticale Varieties in Winter Fallow Saline Farmland [J]. Crops, 2021, 37(4): 191-195.
[8] Zhang Jun, Deng Dasun, Liu Jianjun, Zhou Wenxi, Huang Qianru, Zhang Weijian. Mechanization Cultivation Model of Ratoon Rice with Straw Incorporation in Double Rice Cropping Region in South of Yangtze River Valley [J]. Crops, 2021, 37(4): 212-216.
[9] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[10] Gao Qing, Zhang Yaling, Zhou Yili, Yu Lianpeng, Nie Qiang, Jin Xuehui. Identification of Major Resistance Genes and Resistance Evaluation to Rice Blast in Japonica Rice Varieties in Heilongjiang Province [J]. Crops, 2021, 37(4): 59-66.
[11] Wang Guojiao, Song Peng, Yang Zhenzhong, Zhang Wenzhong. Effects of Straw Returning on Photosynthetic Matter Production Characteristics, Quality of Rice and Soil Nutrients [J]. Crops, 2021, 37(4): 67-72.
[12] Xue Jingfang, Cai Yongsheng, Chen Shuqiang. Effects of Water-Saving Irrigation Cultivation Model on Rice Quality and Starch RVA Profiles [J]. Crops, 2021, 37(4): 86-92.
[13] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[14] Liu Xuetong, Zheng Chunlian, Cao Wei, Dang Hongkai, Cao Caiyun, Li Xiaoshuang, Li Kejiang, Ma Junyong. Effects of Long-Term Located Fertilization on Soil Organic Matter, Nitrogen Forms and Crop Yields [J]. Crops, 2021, 37(4): 130-135.
[15] Yang Lei, Jin Yandi, Liu Houjun. Effects of Iron, Cadmium and Their Interaction on the Primary Reaction of Photosynthesis in Rice [J]. Crops, 2021, 37(4): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!