Crops ›› 2022, Vol. 38 ›› Issue (1): 116-123.doi: 10.16035/j.issn.1001-7283.2022.01.017

Previous Articles     Next Articles

Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System

He Yuxuan1(), Li Yajuan1, Zhou Mingzhuo1, Sui Feng1, Lü Weisheng2, Zhang Jun3, Zeng Yongjun1, Huang Shan1()   

  1. 1Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Ministry of Education and Jiangxi/College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2Jiangxi Institute of Red Soil/Jiangxi Key Laboratory of Red Soil Arable Land Conservation/Scientific Observational and Experimental Station of Arable Land Conservation in Jiangxi, Ministry of Agriculture and Rural Affairs, Nanchang 331717, Jiangxi, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-01-21 Revised:2021-04-21 Online:2022-02-15 Published:2022-02-16
  • Contact: Huang Shan E-mail:isheyuxuan@163.com;ecohs@126.com

Abstract:

In order to explore the effects of applying calcium peroxide (CaO2) on rice yield and greenhouse gas emissions in southern double-cropping rice under the condition of returning full straw to the field, this experiment set no CaO2 (CK) and a one-time application of CaO2 before rotary tillage of early rice. In this process, static dark box-gas chromatography was used to monitor greenhouse gas emissions from rice fields to determine the effects of CaO2 on double-cropping rice yield, greenhouse gas emissions, comprehensive greenhouse effect (GWP) and greenhouse gas emission intensity (GHGI). The results showed that compared with CK, the application of CaO2 significantly increased the yield of late rice in 2018 and 2019 by 3.44% and 2.65%, respectively, but had no significant effect on the yield of early rice. The application of CaO2 significantly reduced the cumulative emission of CH4, GWP and GHGI in the early rice season by 14.73%, 14.74% and 15.09%, respectively, but had no significant effect on the cumulative emission of N2O. The application of CaO2 had no significant effect on CH4 and N2O emissions in late rice season. Compared with CK, the application of CaO2 significantly increased the annual yield in 2018 and 2019 by 1.93% and 2.58% respectively; however, there was no significant effect on the annual cumulative emissions of CH4 and N2O, GWP and GHGI. Therefore, the application of CaO2 could help to achieve a synergistic increase in double-cropping rice yield and greenhouse gas emission reduction in rice fields.

Key words: Double rice, Calcium peroxide, Yield, Greenhouse gas emission

Fig.1

The dynamics of water depth in the field"

Fig.2

The dynamics of air temperature in the field"

Table 1

Effects of applying CaO2 under full straw returning on the yield and its components in the double rice cropping system"

年份
Year
季别
Season
处理
Treatment
有效穗数
Effective panicles
(×104/hm2)
穗粒数
Grains per
panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
产量
Yield
(kg/hm2)
2018 早稻 CK 301.51±8.14a 131.45±0.98a 29.52±0.27a 90.02±1.23a 7871.79±200.20a
Early rice CaO2 296.92±1.54a 139.69±5.51a 29.99±0.19a 89.53±1.07a 7892.31±256.05a
晚稻 CK 260.25±1.25b 183.68±2.30a 23.08±0.31a 86.53±1.37a 9092.04±206.64b
Late rice CaO2 265.25±1.09a 170.98±5.25a 22.57±0.39a 85.46±2.73a 9404.70±120.61a
2019 早稻 CK 299.49±1.36a 143.81±2.66a 22.61±0.21a 88.41±1.39a 7312.82±138.75a
Early rice CaO2 308.92±1.44a 136.71±1.27a 22.50±0.25a 87.66±1.29a 7384.62±146.76a
晚稻 CK 279.92±3.41b 187.38±4.76a 24.12±1.73a 85.23±0.04a 8962.50±132.29b
Late rice CaO2 286.46±6.45a 186.07±5.05a 23.78±1.12a 84.88±0.03a 9200.00±153.60a

Fig.3

Effects of applying CaO2 under full straw return on annual yield in the double rice cropping system Different lowercase letters indicate significant difference between treatments (P > 0.05), the same below"

Fig.4

Effects of applying CaO2 under full straw returning on CH4 emission flux in the double rice cropping system"

Fig.5

Effects of applying CaO2 under full straw returning on N2O emission flux in the double rice cropping system"

Table 2

Effects of applying CaO2 under full straw returning on cumulative emissions of CH4 and N2O, GWP and GHGI in the double rice cropping system"

季别
Season
处理
Treatment
CH4累积排放量
Cumulative emission of CH4 (kg/hm2)
N2O累积排放量
Cumulative emission of N2O (kg/hm2)
GWP
(kg/hm2)
GHGI
(kg/kg)
早稻 CK 167.77±3.71a 0.17±0.09a 4194.30±92.64a 0.53±0.02a
Early rice CaO2 143.05±3.81b 0.19±0.07a 3576.19±95.36b 0.45±0.01b
晚稻 CK 268.51±45.30a 0.17±0.12a 6763.17±1156.23a 0.74±0.12a
Late rice CaO2 286.62±19.45a 0.24±0.03a 7237.08±729.98a 0.77±0.08a

Table 3

Effects of applying CaO2 under full straw returning on total cumulative emissions of CH4 and N2O, GWP and GHGI in the double rice cropping system during cropping period"

处理
Treatment
CH4累积排放总量
Total cumulative emission of CH4 (kg/hm2)
N2O累积排放总量
Total cumulative emission of N2O (kg/hm2)
GWP
(kg/hm2)
GHGI
(kg/kg)
CK 436.28±47.53a 0.34±0.08a 11 008.19±1184.61a 0.65±0.06a
CaO2 429.66±25.65a 0.43±0.05a 10 869.26±643.08a 0.63±0.05a

Fig.6

Effects of applying CaO2 under full straw returning on soil pH in the double rice cropping system"

[1] Liu S L, Pu C, Ren Y X, et al. Yield variation of double-rice in response to climate change in Southern China. European Journal of Agronomy, 2016, 81:161-168.
doi: 10.1016/j.eja.2016.09.014
[2] 廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018, 32(9):1821-1830.
[3] 陈云峰, 夏贤格, 杨利, 等. 秸秆还田是秸秆资源化利用的现实途径. 中国土壤与肥料, 2020(6):299-307.
[4] 伍玉鹏, 彭其安, Muhammad S, 等. 秸秆还田对土壤微生物影响的研究进展. 中国农学通报, 2014, 30(29):175-183.
[5] 李昊昱, 孟兆良, 庞党伟, 等. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019, 45(6):893-903.
doi: 10.3724/SP.J.1006.2019.81078
[6] 马小婷, 隋玉柱, 朱振林, 等. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展. 江苏农业科学, 2017, 45(6):14-20.
[7] Cimélio B, Falbernide S C, Gabriel M P, et al. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Research, 2014, 162:60-69.
doi: 10.1016/j.fcr.2014.03.015
[8] 朱安繁, 邵华, 张龙华. 江西省耕地土壤酸化现状与改良措施. 江西农业学报, 2014, 26(4):43-45.
[9] 徐仁扣. 土壤酸化及其调控研究进展. 土壤, 2015, 47(2):238-244.
[10] Zhang T, Chen H, Ruan H. Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 2018, 12:1817-1825.
doi: 10.1038/s41396-018-0096-y
[11] 王玲玲. 缓释过氧化钙对潜育稻田的改良效果研究. 长沙:湖南大学, 2018.
[12] 芮绍云. 改良剂对旱地红壤温室气体排放及微生物的影响. 南昌:南昌工程学院, 2018.
[13] 翟永青, 丁士文, 姚子华, 等. 过氧化钙在水稻直播中的应用试验研究. 河北大学学报(自然科学版), 2002, 22(4):360-362.
[14] 杨进, 郦和生, 王岽, 等. 过氧化钙降解有机污染物研究进展. 化工环保, 41(2):140-145.
[15] Carberry J B, Yang S Y. Enhancement of PCB congener biodegradation by pre-oxidation with Fenton's reagent. Water Science and Technology, 1994, 30(7):105-113.
[16] 张静, 周雪飞, 钱雅洁. 过氧化钙在环境修复应用中的研究进展. 环境化学, 2014, 33(2):321-326.
[17] 逯非, 王效科, 韩冰, 等. 稻田秸秆还田:土壤固碳与甲烷增排. 应用生态学报, 2010, 21(1):99-108.
[18] Xia L L, Wang S W, Yan X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agriculture Ecosystems and Environment, 2014, 197:118-127.
doi: 10.1016/j.agee.2014.08.001
[19] Frankenberger W T, Jr. Factors affecting the fate of urea peroxide added to soil. Bulletin of Environmental Contamination and Toxicology, 1997, 59(1):50-57.
pmid: 9184040
[20] Xu Y Z, Nie L X, Buresh R J, et al. Agronomic performance of late-season rice under different tillage,straw,and nitrogen management. Field Crops Research, 2009, 115(1):79-84.
doi: 10.1016/j.fcr.2009.10.005
[21] 成臣, 杨秀霞, 汪建军, 等. 秸秆还田条件下灌溉方式对双季稻产量及农田温室气体排放的影响. 农业环境科学学报, 2018, 37(1):186-195.
[22] Stocker T F, Qin D, Plattner G K, et al. IPCC,2013:Climate change 2013:the physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. UK: Cambridge University Press,1535.
[23] 曾勇军, 周庆红, 吕伟生, 等. 土壤酸化对双季早、晚稻产量的影响. 作物学报, 2014, 40(5):899-907.
[24] 袁颖红, 李丽, 芮绍云, 等. 生物质炭及过氧化钙对旱地红壤CH4,CO2和N2O排放的影响. 长江流域资源与环境, 2019, 28(3):152-160.
[25] 王丹英, 韩勃, 章秀福, 等. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34(5):803-808.
[26] Liao P, Huang S, Gestel N V, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 2018, 216:217-224.
doi: 10.1016/j.fcr.2017.11.026
[27] 廖萍, 刘磊, 何宇轩, 等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应. 作物学报, 2020, 46(1):84-92.
[28] 单玉华, 蔡祖聪, 韩勇, 等. 淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系. 土壤学报, 2006(6):941-947.
[29] 曾研华, 吴建富, 曾勇军, 等. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响. 作物学报, 2018, 44(3):454-462.
[30] 胡继杰, 朱练峰, 胡志华, 等. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响. 农业工程学报, 2017, 33(1):167-174.
[31] Wang H F, Zhao Y S, Li T Y, et al. Properties of calcium peroxide for release of hydrogen peroxide and oxygen:a kinetics study. Chemical Engineering Journal, 2016, 303:450-457.
doi: 10.1016/j.cej.2016.05.123
[32] Lehmann J, Joseph S. Biochar for environmental management:science and technology. Forest Policy and Economics, 2009, 11(7):15801-15811.
[33] 余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究. 植物营养与肥料学报, 2015, 21(1):138-146.
[34] Spokas K A, Reicosky D C. Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 2009, 3(1):179-193.
[35] 王正, 胡磊, 朱波. 三峡水库消落带优势草本植物残体淹水后温室气体排放特征. 长江流域资源与环境, 2020, 29(9):1965-1974.
[36] 张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析. 农业工程学报, 2015, 31(22):1-6.
[37] 冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45(8):1250-1259.
doi: 10.3724/SP.J.1006.2019.82051
[38] 谢义琴, 张建峰, 姜慧敏, 等. 不同施肥措施对稻田土壤温室气体排放的影响. 农业环境科学学报, 2015, 34(3):578-584.
[39] Siciliano S D, Ma W K, Ferguson S, et al. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biology and Biochemistry, 2009, 41(6):1104-1110.
doi: 10.1016/j.soilbio.2009.02.024
[40] Lai R. Soil carbon management and climate change. Carbon Management, 2013, 4(4):439-462.
doi: 10.4155/cmt.13.31
[41] 潘亚男, 王娅静, 曹文超, 等. 土壤pH影响氧化亚氮(N2O)排放的研究进展. 安徽农学通报, 2017, 23(15):19-24,99.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[4] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[5] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[6] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[7] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[8] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[9] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[10] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[11] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[12] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[13] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[14] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[15] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!