Crops ›› 2022, Vol. 38 ›› Issue (1): 196-204.doi: 10.16035/j.issn.1001-7283.2022.01.030

Previous Articles     Next Articles

Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China

Yang Zhinan1(), Huang Jinwen1, Han Fanxiang2, Li Yawei1, Ma Jiantao1, Chai Shouxi1, Cheng Hongbo3, Yang Delong3, Chang Lei1()   

  1. 1College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
    2School of Geography and Environment, Lanzhou City University, Lanzhou 730070, Gansu, China
    3College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-01-27 Revised:2021-04-23 Online:2022-02-15 Published:2022-02-16
  • Contact: Chang Lei E-mail:1945955080@qq.com;chang3258@126.com

Abstract:

To find out the effects of straw strip mulching and film mulching on the soil heat transfer and yield of potato farmland, experiments were conducted from 2018 to 2019. Five treatments were set to study the effects of different mulching on the soil heat transfer characteristics and yield of potato farmland. The five treatments were mulching materials (mulching film, straw), mulching period (autumn, spring), and uncovered open fields (CK). The results showed that there were significant differences in the temperature under each treatment in different growth periods and different soil layers. Compared with CK, the straw mulching in the two growing seasons significantly reduced the soil temperature in 0-25cm soil layer by 0.6℃-0.9℃, and the fall of temperature with autumn stalk mulching was greater than that with spring stalk mulching. The film mulching increased the soil temperature by 0.3℃-0.7℃. In different periods, the surface cover had a dual effect of increasing temperature and decreasing temperature. The cooling effect of straw strip mulching was greater than that of plastic film mulching, and the heating effect of plastic film mulching was greater than that of straw mulching. The diurnal variation of ground temperature had an obvious hysteresis effect with the change of temperature, and the coverage significantly suppressed ground temperature fluctuations. The mulching had a "dual suppression effect" as it inhibited the loss of soil heat to the atmosphere during low-temperature periods, and inhibited the absorption of solar radiation heat by the surface during high-temperature periods. The straw mulching was better than the plastic mulching, and the autumn mulching was better than the spring mulching. Compared with the CK, in the two growing seasons, the temperature gradient under the straw mulching decreased by 7.3-7.8℃/m and under the film mulching it decreased by 3.4-6.3℃/m. The straw strip mulching increased the yield by 14.7%, and the film mulching increased the yield by 25.3%. The difference in the single potato weight between the treatments was the main factor causing the difference in yield. Therefore, the straw strip mulching had application and promotion value in potato production in the northwest rainfed area.

Key words: Straw strip mulching, Film mulching, Soil temperature, Soil temperature gradient, Yield, Potato

Fig.1

Distribution of precipitation during the whole growth of potato at the experiment site in 2018 and 2019"

Table 1

Experiment design"

处理Treatment 耕作措施Tillage measure
地膜秋覆盖(MQ)



大垄宽70cm,高20cm,小垄宽40cm,高15cm,留10cm渗水带,用120cm宽的黑色地膜全地面覆盖,按每幅播种2行、行距40cm、株距33cm的“品”字形大垄2侧穴播马铃薯。秋季覆膜
地膜春覆盖(MC)



大垄宽70cm,高20cm,小垄宽40cm,高15cm,留10cm渗水带,用120cm宽的黑色地膜全地面覆盖,按每幅播种2行、行距40cm、株距33cm的“品”字形大垄2侧穴播马铃薯。春季覆膜
秸秆秋覆盖(JQ)

秸秆覆盖带和种植带均为60cm,2行种植,行距60cm,株距33cm,总带宽120cm,秸秆覆盖量9000kg/hm2,玉米秸秆收获后当季覆盖
秸秆春覆盖(JC)

秸秆覆盖带和种植带均为60cm,2行种植,行距60cm,株距33cm,总带宽120cm,秸秆覆盖量9000kg/hm2,玉米秸秆收获后春季覆盖
露地对照(CK)
平作不覆盖,株距33cm,行距60cm,垄宽120cm

Fig.2

Average soil temperature of 0-25cm depth in whole growth period under different treatments"

Fig.3

Dynamic variation of soil average temperaturein 0-25 cm soil layer during the potato whole growth period under different treatments"

Fig.4

Diurnal variation of soil temperature and atmospheric temperature in surface layer during flowering of potato"

Fig.5

The effects of different treatments on the soil temperature gradient at the lowest point (7:00) MR: seedling stage; TI: squaring stage; TE: flowering stage; MT: tuber bulking stage; SA: maturing stage. Vertical error bars represent the significant difference at P < 0.05 (n=3). The same below"

Fig.6

The effects of different treatments on the soil temperature gradient at the highest point (17:00)"

Fig.7

Diurnal variation of transverse temperature gradient of straw mulch treatments"

Table 2

Potato yield and yield factors"

年份
Year
处理
Treatment
单株结薯数
Potato number per plant
单薯重
Single potato weight (g)
鲜薯产量
Fresh potato yield (kg/hm2)
商品薯率
Commercial potato rate (%)
2018 MQ 6.0ab 115.7a 36 843.2a 86.0ab
MC 5.6b 117.6a 36 052.2a 87.5a
JQ 7.1a 87.1b 31 878.7b 80.6b
JC 7.0a 87.1b 31 693.0b 80.4b
CK 6.6ab 85.0b 27 492.5c 73.9c
变异系数CV (%) 10.0 16.9 11.5 6.6
2019 MQ 6.6c 118.4a 42 569.2a 85.1a
MC 6.6c 116.0a 36 467.3b 87.1a
JQ 7.5a 103.5b 40 040.0ab 80.5bc
JC 7.2b 103.4b 36 167.2b 80.2b
CK 7.3ab 93.9c 33 497.7c 75.5c
变异系数CV (%) 5.9 9.4 9.4 5.6
[1] Zhao H, Xiong Y, Li F, et al. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agricultural Water Management, 2012, 104:68-78.
doi: 10.1016/j.agwat.2011.11.016
[2] Li Q, Li H, Zhang L, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Research, 2018, 221:50-60.
doi: 10.1016/j.fcr.2018.02.017
[3] Keesstra S D, Rodrigo-Comino J, Novara A, et al. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 2019, 174:95-103.
doi: 10.1016/j.catena.2018.11.007
[4] Wang J, Ghimire R, Fu X, et al. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management, 2018, 206:95-101.
doi: 10.1016/j.agwat.2018.05.004
[5] Abbas E R, Wei W, Zejun T, et al. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agricultural and Forest Meteorology, 2017, 232:141-151.
doi: 10.1016/j.agrformet.2016.07.015
[6] 王曼华, 陈为峰, 宋希亮, 等. 秸秆双层覆盖对盐碱地水盐运动影响初步研究. 土壤学报, 2017, 54(6):1395-1403.
[7] Gu X, Li Y, Du Y. Biodegradable film mulching improves soil temperature,moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil and Tillage Research, 2017, 171:42-50.
doi: 10.1016/j.still.2017.04.008
[8] 杨长刚, 柴守玺. 秸秆带状覆盖对旱地冬小麦产量及土壤水热利用的调控效应. 应用生态学报, 2018, 29(10):3245-3255.
[9] Stephen S D, Vance M W, Shinsuke A. White-striped plastic mulch reduces root-zone temperatures during establishment and increases early season yields of annual winter strawberry. Scientia Horticulturae, 2019, 243:602-608.
doi: 10.1016/j.scienta.2018.09.018
[10] 程宏波, 牛建彪, 柴守玺, 等. 不同覆盖材料和方式对旱地春小麦产量及土壤水温环境的影响. 草业学报, 2016(2):47-57.
[11] 陈玉章, 柴守玺, 范颖丹, 等. 覆盖模式对旱地冬小麦土壤温度和产量的影响. 中国农业气象, 2014, 35(4):403-409.
[12] Prosdocimi M, Jordán A, Tarolli P, et al. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. The Science of the Total Environment, 2016, 547:323-330.
doi: S0048-9697(15)31232-8 pmid: 26789370
[13] 祖米来提·吐尔干, 林涛, 严昌荣, 等. 地膜覆盖时间对新疆棉田水热及棉花耗水和产量的影响. 农业工程学报, 2018, 34(11):113-120.
[14] 周瑜, 苏旺, 王舰, 等. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016, 42(6):873-885.
[15] 王晓宇, 郭华春. 不同培育温度对马铃薯生长及产量的影响. 中国马铃薯, 2009, 23(6):344-346.
[16] 骆冬洁, 崔明奎. 对地膜残留问题的思考及建议. 中国农业信息, 2014(12):25-26.
[17] 刘超吉, 侯书林, 甄健民, 等. 南疆棉田残膜污染现状及防治途径. 农业工程, 2018, 8(3):45-51.
[18] 于庆峰, 苗庆丰, 史海滨, 等. 秸秆覆盖量对土壤温度和春玉米耗水规律及产量的影响. 水土保持研究, 2018, 25(3):111-116.
[19] 蔡太义, 贾志宽, 黄耀威, 等. 中国旱作农区不同量秸秆覆盖综合效应研究进展Ⅰ.不同量秸秆覆盖的农田生态环境效应. 干旱地区农业研究, 2011, 29(5):63-68.
[20] 闫宗正, 陈素英, 张喜英, 等. 秸秆覆盖时间和覆盖量对冬小麦田温度效应及地上地下生长的影响. 中国生态农业学报, 2017, 25(12):1779-1791.
[21] 常磊, 韩凡香, 柴雨葳, 等. 秸秆带状覆盖对半干旱雨养区冬小麦田地温和产量的影响. 应用生态学报, 2018, 29(9):2949-2958.
[22] Wang Y M, Chen S Y, Sun H Y, et al. Effects of different cultivation practices on soil temperature and wheat spike differentiation. Cereal Research Communications, 2009, 37(4):575-584.
doi: 10.1556/CRC.37.2009.4.12
[23] 钱玉平, 田慧慧, 程宏波, 等. 秸秆覆盖及播种方式对马铃薯耗水特性和产量的影响. 中国生态农业学报(中英文), 2020, 28(6):826-834.
[24] 李辉, 柴守玺, 常磊, 等. 秸秆带状覆盖下培土对马铃薯产量与水分利用效率的影响. 农业工程学报, 2019, 35(21):107-115.
[25] 杨长刚, 柴守玺. 秸秆带状覆盖对旱地冬小麦产量及土壤水热利用的调控效应. 应用生态学报, 2018, 29(10):3245-3255.
[26] 胡新元, 谢奎忠, 陆立银, 等. 不同功能地膜覆盖对旱地马铃薯土壤水热效应和产量的影响. 中国马铃薯, 2019, 33(3):146-151.
[27] 梅四卫, 朱涵珍, 王术, 等. 不同覆盖方式对土壤水肥热状况以及玉米产量影响. 灌溉排水学报, 2020, 39(4):68-73.
[28] 梁冰妍, 韩凡香, 王闻天, 等. 不同覆盖材料对土壤温度及马铃薯产量的影响. 安徽农学通报, 2019, 25(11):35-37,39.
[29] 霍轶珍, 丁春莲, 银花, 等. 不同材料覆盖对马铃薯田土壤水热状况及产量的影响. 干旱区资源与环境, 2019, 33(1):90-94.
[30] 郭振, 卢垟杰. 表土层土壤温度的日变化规律. 农业与技术, 2020, 40(6):9-11.
[31] 马稚桐, 王文科, 张在勇, 等. 浅层包气带土壤水昼夜分布变化规律模拟研究. 水资源与水工程学报, 2019, 30(2):245-251,260.
[32] 程璨. 空青山次生栎林温度垂直梯度变化特征研究. 南京:南京林业大学, 2017.
[33] 孙露露. 温度梯度下土壤渗流与污染物迁移的数值模拟. 扬州:扬州大学, 2015.
[34] 陈敏, 陈孝杨, 王校刚, 等. 煤矿区重构土壤剖面水气变化及其对温度梯度的响应. 煤炭学报, 2020, 46(4):1-11.
[35] 苏建云, 金飞鹏, 杨立军. 宁夏中部干旱带旱地马铃薯覆膜种植技术研究. 宁夏农林科技, 2015, 56(12):9-10.
[36] 董永威. 间作及不同覆盖对冬马铃薯和宿根蔗的效应研究. 南宁:广西大学, 2018.
[37] 陈素英, 张喜英, 孙宏勇, 等. 华北平原秸秆覆盖冬小麦减产原因分析. 中国生态农业学报, 2013, 21(5):519-525.
[38] 高亚军, 李生秀. 旱地秸秆覆盖条件下作物减产的原因及作用机制分析. 农业工程学报, 2005, 21(7):15-19.
[39] 马建涛, 程宏波, 陈玉章, 等. 不同覆盖方式对旱地马铃薯耗水特性和产量的影响. 生态学杂志, 2020, 39(7):2242-2250.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[6] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[7] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[8] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[9] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[10] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[11] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[12] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[13] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[14] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[15] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!