Crops ›› 2022, Vol. 38 ›› Issue (4): 14-21.doi: 10.16035/j.issn.1001-7283.2022.04.003

Previous Articles     Next Articles

Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.)

Zheng Siyi1(), Yang Ye1, Song Yuanhui1, Hua Qin1, Lin Quanxiang1, Zhang Haitao1, Cheng Zhijun2()   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-10-06 Revised:2021-12-08 Online:2022-08-15 Published:2022-08-22
  • Contact: Cheng Zhijun E-mail:2363085742@qq.com;chengzhijun@caas.cn

Abstract:

Starch synthesis in endosperm development determines the appearance and flavor quality of rice grains. m5788 is a shriveled grain sweet embryo mutant derived from the tissue culture progeny of Japonica var. Zhonghua 11. The 1000-grain weight and the number of grains per panicle decreased significantly. Due to the blocking of starch synthesis, the level of soluble sugar increased significantly. Genetic analysis revealed that m5788 was determined by a pair of recessive nuclear genes. Linkage analysis localized the candidate gene to the 110kb region flanked by indel markers of Z8-25.8 and Z8-25.9 on chromosome 8 in 569 F2 mutant individuals. In this region there was a putative isoamylase encoding the gene LOC_Os08g40930, which was 82.2% homologous to maize Sugary 1 and was involved in the DBE pathway of the starch debranching enzyme ISA1. The sequencing results showed that no genomic sequence change occurs in LOC_Os08g40930 between wild type and m5788. However, the qRT-PCR analysis showed that the decrease in the expression level of the gene LOC_Os08g40930 in the mutant m5788 was presented together with the expression level of the coding-gene of pullulanase-type in same DBE pathway. All results suggest that isa1 carried by m5788 is a novel allele.

Key words: Rice, Endosperm development, Fine mapping, Starch synthesis

Table 1

New developed polymorphic Indel and SNP primers used for fine mapping"

标记Marker 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
Z8-25.6 CTCGTGCGCGCGCACCGTTGG GCAGATGGATGGGACGGAGT
Z8-25.7 TTTGGGGCTGGAGCACCTTG CATCATAGAATGTGCTGA
Z8-28.8 TTTTTCTTCTTCTCATGCCTT TTTAGCTTCTCTTCCATTCCA
Z8-25.9 GAAGAGAGCTGATTCAGGAGAGAGC ATAGTTAGGCAGCAACAGCAACG
Z8-26.2 ATGATGGTCCATAAGAGTCG CAGTGTTCAAGATGGTCATTG

Table 2

Primers used for qRT-PCR"

引物Primer 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
ISA1 GTACTTCGATGTCTCCAATGTCG ATACTCTCCTCGGCTTATCACTG
PUL CCTAAAGCTTACTACCCATGCAT ACATGTCCTTGTCTCCACTTCTT

Fig.1

Agronomic traits comparison between wild type and the mutant m5788 (a) Plant at maturity stage; (b) Plant height components (left: wild type, right: m5788); (c) Grain appearance (Zhonghua 11: two circles outside; m5788: two circles inside); (d) Grain width; (e) I2-KI dyeing"

Table 3

Comparison of agronomic traits between wild type and the mutant m5788"

农艺性状
Agronomic trait
野生型
Wild type
突变体
Mutant
株高Plant height (cm) 117.0±2.8 100.2±2.7**
分蘖数Tiller number 9.5±2.1 12.6±1.9*
有效穗数Effective tiller number 9.3±1.7 13.1±2.7**
穗长Panicle length (cm) 24.2±1.3 20.6±1.0**
一次枝梗数Number of primary branches 14.0±1.8 12.9±1.1
二次枝梗数Number of secondary branches 45.8±4.0 43.0±6.6
穗粒数Grain number per panicle 278.0±45.8 184.0±12.3*
结实率Seed setting (%) 97.0±0.0 95.0±2.0
千粒重1000-grain weight (g) 29.6±1.95 15.6±0.87**

Table 4

Comparison of quality index between wild type and the mutant %"

品质指标Quality index 野生型Wild type 突变体Mutant
水分Moisture 9.99±0.0011 9.89±0.0004
蛋白质Protein 5.67±0.0005 7.58±0.0012**
直链淀粉Amylose 19.26±0.0035 19.62±0.0008*
脂肪酸Fatty acid 14.67±0.0113 16.19±0.0092**
胶稠度Gel consistency 50.63±0.0073 35.97±0.0227**

Fig.2

Comparison of soluble sugar content between wild type and mutant at different stages “**”represents extremely significantly different at P < 0.01"

Fig.3

Schematic diagram of map-based cloning on the candidate gene M5788 (a) rough mapping of the gene M5788 flanked by two markers Z8-24 and Z8-26.2, (b) M5788 was finely mapped to a 110kb interval delimited by two markers of Z8-25.8 and Z8-25.9, (c) the structure of target gene LOC_Os08g40930"

Table 5

Gene annotations in the mapping interval"

基因Gene 基因注释Gene annotation
LOC_Os08g40830 含有pumilio结构域的蛋白PPD1
LOC_Os08g40890 与精胺合酶有关
LOC_Os08g40940 表达蛋白
LOC_Os08g40840 胞外复合亚基EXO70
LOC_Os08g40910 表达蛋白
LOC_Os08g40950 表达蛋白
LOC_Os08g40850 线粒体载体蛋白
LOC_Os08g40919 表达蛋白
LOC_Os08g40860 RNA假尿苷合酶
LOC_Os08g40930 α淀粉酶,含有蛋白质的催化结构域
LOC_Os08g40990 受体蛋白激酶1
LOC_Os08g40870 五肽重复蛋白
LOC_Os08g40880 含有蛋白质的RNA识别基序
LOC_Os08g40900 生长素响应因子

Fig.4

Phylogenetic tree of LOC_Os08g40930 homologs GRMZM2G138060, GRMZM2G150796, and GRMZM2G090905 are maize genes, Bradi3g40410, Bradi4g32707, and Bradi2g26170 are wheat genes, and AT2G39930 and AT1G03310 are Arabidopsis genes, LOC_Os05g32710 and LOC_Os09g29404 are rice genes"

Fig.5

Comparison of expression levels of OsISA1 and OsPUL in wild type and mutant"

[1] 金锡铭. 水稻淀粉突变体flo6的表型分析及基因精细定位. 南京:南京农业大学, 2010.
[2] Manners D J. Recent developments in our understanding of amylopectin structure. Carbohydrate Polymer, 1989, 11(2):87-112.
doi: 10.1016/0144-8617(89)90018-0
[3] Jeon J S, Ryoo N, Hahn T R, et al. Starch biosynthesis in cereal endosperm. Plant Physiology Biochemistry, 2010, 48(6):383-392.
doi: 10.1016/j.plaphy.2010.03.006
[4] Pfister B, Zeeman S C. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 2016, 73(14):2781-2807.
doi: 10.1007/s00018-016-2250-x
[5] Dinges J R, Colleoni C, Myers A M, et al. Molecular structure of three mutations at the maize sugary1locus and their allele-specific phenotypic effects. Plant Physiology, 2001, 125:1406-1418.
pmid: 11244120
[6] Takahashi S, Kumagai Y, Igarashi H, et al. Biochemical analysis of a new sugary-type rice mutant,Hemi-sugary1,carrying a novel allele of the sugary-1 gene. Planta, 2019, 251(1):1-29.
doi: 10.1007/s00425-019-03297-x
[7] Sestili F, Sparla F, Botticella E, et al. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science, 2016, 252:230-238.
doi: 10.1016/j.plantsci.2016.08.001
[8] Ferreira S J, Senning M, Fischer-Stettler M, et al. Simultaneous silencing of isoamylases ISA1,ISA2and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS ONE, 2017, 12(7):e0181444.
doi: 10.1371/journal.pone.0181444
[9] Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM 6 encodes a CBM 48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014, 77(6):917-930.
doi: 10.1111/tpj.12444
[10] 李家洋, 钱前, 曾大力, 等. 水稻胚乳甜质控制基因SU1及其应用:中国,200510006770.8. 200510006770.8. 2005-02-04.
[11] 赵华, 张其芳, 赵倩, 等. 水稻胚乳糖质突变体Sug-11的淀粉粒结构和粒径分布及相关理化特性. 核农学报, 2015, 29(4):724-733.
doi: 10.11869/j.issn.100-8551.2015.04.0724
[12] Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. The Plant Journal, 2018, 95(3):545-556.
doi: 10.1111/tpj.13970
[13] 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化. 食品研究与开发, 2020, 41(7):196-200.
[14] Kubo A, Colleoni C, Dinges J R, et al. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiology, 2010, 153(3):956-969.
doi: 10.1104/pp.110.155259
[15] Streb S, Delatte T, Umhang M, et al. Starch granule biosynthesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell, 2008, 20:3448-3466.
doi: 10.1105/tpc.108.063487
[16] Dinges J R, Colleoni C, Myers J. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15(3):666-680.
pmid: 12615940
[17] Li Q F, Zhang G Y, Dong Z W, et al. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiology Biochemistry, 2009, 47(5):351-358.
doi: 10.1016/j.plaphy.2009.02.001
[18] Kawagoe Y, Kubo A, Satoh H, et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. The Plant Journal, 2005, 42(2):164-174.
doi: 10.1111/j.1365-313X.2005.02367.x
[19] Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999, 121(2):399-409.
pmid: 10517831
[20] Fujita N, Toyosawa Y, Utsumi Y, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. Journal of Experimental Botany, 2009, 60(3):1009-1023.
doi: 10.1093/jxb/ern349 pmid: 19190097
[21] 赵华, 王俊敏, 张其芳, 等. 水稻糖质胚乳突变体Sug-11籽粒灌浆过程的淀粉合成关键酶活性及其与淀粉理化特性关系. 中国水稻科学, 2015, 29(1):73-81.
doi: 10.3969/j.issn.1001-7216.2015.01.009
[22] East E M, Hayes H K. Inheritance in maize. Zeitschrift für induktive Abstammungs-und Vererbungslehre, 1911, 6(1):193-196.
[23] 李水琴, 王文瑞, 刘海英, 等. 玉米胚乳遗传基础及相关基因研究. 种子, 2016, 35(6):45-49.
[24] Nakamura Y, Kubo A, Shimamune T, et al. Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. The Plant Journal, 1997, 12(1):143-153.
doi: 10.1046/j.1365-313X.1997.12010143.x
[25] Kubo A, Rahman S, Utsumi Y, et al. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase 1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiology, 2005, 137(1):43-56.
doi: 10.1104/pp.104.051359
[1] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[2] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[3] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[4] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[5] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[6] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[7] Yang Chaozhen, Fang Haidong, Su Yan, Chen Xiaoyan, Liu Xiaoli, Yang Zhongyi. Study on Ecological and Geographic Distribution of Rice Planthopper Resistance Diversity of Rice Germplasms in Yunnan [J]. Crops, 2022, 38(3): 109-114.
[8] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
[9] Gao Jie, Li Siyu, Cheng Dayu, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Slow/Controlled Release Fertilizers on Rice Yield and Quality [J]. Crops, 2022, 38(3): 20-26.
[10] Su Yuting, Yuan Shuai, Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie. Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2022, 38(3): 225-232.
[11] Du Haimeng, Wei Huanhe, Yu Qingyuan, Dai Qigen. Application Progress and Prospect of Rice Foliar Fertilizer [J]. Crops, 2022, 38(3): 33-38.
[12] Qin Na, Zhu Cancan, Dai Shutao, Song Yinghui, Li Junxia, Wang Chunyi. Fine Mapping and Functional Analysis of Yellow Leaf Mutant ylm-1 in Foxtail Millet [J]. Crops, 2022, 38(3): 55-62.
[13] Wang Baojun, Cheng Wangda, Shen Yaqiang, Qin Yebo, Su Yao, Chen Gui, Lu Chenni, Zhang Hongmei. Effects of Nitrogen Fertilizer Reduction on Grain Protein of High Quality Rice and Its Rationality Evaluation [J]. Crops, 2022, 38(3): 168-173.
[14] Cheng Dayu, Liu Kun, Gao Jie, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Nutrient and Water Management on Rice Fragrance [J]. Crops, 2022, 38(2): 22-27.
[15] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!