Crops ›› 2023, Vol. 39 ›› Issue (2): 115-120.doi: 10.16035/j.issn.1001-7283.2023.02.016

Previous Articles     Next Articles

Comprehensive Analysis of Milling Quality and Eating Quality of Japonica Rice in Cold Region

Wang Rongsheng1,2,3(), Mu Fengchen2,3(), Li Kun2,3, Zhang Wei2,3, Liu Hui2,3, Ding Guohua4, Yang Guang4, Wang Nanbo2,3, Zhang Guomin2,3, Liu Yuming2,3, Tao Yongqing2,3   

  1. 1Post-Doctoral Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin 150086,Heilongjiang, China
    2Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences,Harbin 150028, Heilongjiang, China
    3Heilongjiang Key Laboratory of Crop and Livestock Molecular Breeding,Harbin 150028, Heilongjiang, China
    4Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2021-11-01 Revised:2021-12-08 Online:2023-04-15 Published:2023-04-11

Abstract:

In order to clarify the interrelationship between milling quality and eating quality of japonica rice, this research focused on 337 high generation inbred accessions and their eleven quality-related characteristics were surveyed to calculate their correlation matrix, conduct principal component analysis (PCA), clustering analysis and multiple linear regression were performed. The results showed that significant positive correlation was existed among brown rice rate, milled rice rate and head rice rate. Eating scores showed correlation with both amylose content and protein content. In PCA, the cumulative variance contribution rate of four principal components were up to 80%. The first five rice varieties ranked by integrating score were J139, J201, J141, J204 and J138. Eating score was treated as dependent variable, brown rice rate, milled rice rate, protein content, water content and amylose content were treated as independent variable in regression analysis, and regression equation was obtained. All these analysis methods and the equation of eating scores can be used in preliminary evaluation for new rice strains. The comparation of new varieties would be more efficiency and precise.

Key words: Rice, Milling quality, Eating quality, Correlation, Multiple linear regression analysis, Principal component analysis

Table 1

Statistical overview of different traits of 337 rice lines"

项目
Item
糙米率
Brown
rice
rate (%)
精米率
Milled
rice
rate (%)
整精米率
Head rice
rate (%)
食味评分
Eating
score
蛋白质含量
Protein
content
(%)
含水量
Water
content
(%)
直链淀
粉含量
Amylose
content (%)
粒长
Grain
length
(mm)
粒宽
Grain
width
(mm)
粒厚
Grain
thickness
(mm)
长宽比
Length-
width
ratio
最小值Minimum 61.50 47.50 38.00 69.00 6.00 12.50 5.00 4.53 2.12 1.23 1.28
最大值Maximum 85.20 77.30 76.30 85.00 12.10 18.10 22.20 7.97 3.67 2.97 3.25
平均值Average 80.71 70.06 67.48 79.58 7.93 15.47 18.79 6.18 2.56 1.95 2.44
标准差Standard deviation 2.73 3.92 5.52 2.56 0.94 0.82 2.32 0.61 0.23 0.21 0.36
变异系数Coefficient of variation (%) 3.38 5.60 8.18 3.21 11.85 5.29 12.36 9.87 9.02 10.84 14.93

Table 2

Correlation coefficients of different rice lines in each rice quality characteristics"

表型性状
Phenotype trait
糙米率
Brown
rice rate
精米率
Milled
rice rate
整精米率
Head rice
rate
食味评分
Eating
score
蛋白质含量
Protein
content
含水量
Water
content
直链淀
粉含量
Amylose content
粒长
Grain
length
粒宽
Grain
width
粒厚
Grain
thickness
精米率Milled rice rate 0.74***
整精米率Head rice rate 0.63*** 0.84***
食味评分Eating score 0.17** -0.04 -0.07
蛋白质含量Protein content -0.18*** 0.00 0.07 -0.80***
含水量Water content 0.24*** 0.14** 0.23*** -0.05 0.34***
直链淀粉含量Amylose content 0.14** -0.09 -0.15** 0.61*** -0.91*** -0.34***
粒长Grain length 0.07 -0.14* -0.22*** 0.17** -0.20*** -0.14** 0.20***
粒宽Grain width 0.02 0.19*** 0.27*** -0.21*** 0.33*** 0.32*** -0.34*** -0.48***
粒厚Grain thickness 0.04 0.15** 0.16** -0.14* 0.19*** 0.17** -0.24*** -0.21*** 0.57***
长宽比Length-width ratio 0.00 -0.21*** -0.30*** 0.22*** -0.29*** -0.28*** 0.29*** 0.88*** -0.82*** -0.43***

Table 3

The eigenvalue, variance contribution rate and cumulative variance contribution rate of each principal component"

主成分
Principal
component
特征值
Eigenvalue
方差贡献率
Variance
contribution rate (%)
累计方差贡献率
Cumulative variance
contribution rate (%)
PC1 3.8437 34.94 34.94
PC2 2.5338 23.03 57.98
PC3 1.6953 15.41 73.39
PC4 0.9629 8.75 82.14
PC5 0.8434 7.67 89.81
PC6 0.3601 3.27 93.08
PC7 0.3384 3.08 96.16
PC8 0.2507 2.28 98.44
PC9 0.1283 1.17 99.60
PC10 0.0346 0.31 99.92
PC11 0.0089 0.08 100.00

Table 4

Eigenvector of the first four principal components"

品质指标
Quality indicator
特征向量Eigenvector
PC1 PC2 PC3 PC4
x1 -0.074 -0.533 -0.226 -0.085
x2 -0.208 -0.494 -0.226 0.194
x3 -0.254 -0.451 -0.190 0.186
x4 0.277 -0.292 0.340 -0.322
x5 -0.349 0.330 -0.365 0.016
x6 -0.243 -0.060 -0.118 -0.675
x7 0.350 -0.263 0.347 0.047
x8 0.321 -0.002 -0.407 -0.391
x9 -0.397 -0.009 0.309 -0.184
x10 -0.274 -0.019 0.213 -0.389
x11 0.413 0.020 -0.416 -0.143

Table 5

Comprehensive PCA scores of first five accessions in rice quality characteristics"

品系
Line
食味评分
Eating score
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
蛋白质含量
Protein content (%)
含水量
Water content (%)
直链淀粉含量
Amylose content (%)
J139 72.00 80.70 72.90 11.20 17.90 11.20
J201 79.00 82.08 73.08 11.50 18.00 5.60
J141 76.00 81.48 72.54 11.30 17.70 10.20
J204 77.00 79.44 72.42 10.40 17.20 13.30
J138 81.00 82.60 73.54 10.80 18.10 6.70

Table 6

The results of multiple linear regression analysis and significance test"

项目
Item
系数估计值
Estimated
value
标准误
Standard
error
t
t value
P
P value
(>|t|)
截距Intercept 119.366 3.376 35.354 2.00E-16
糙米率
Brown rice rate
0.102 0.040 2.575 0.011
精米率
Milled rice rate
-0.147 0.027 -5.506 7.38E-08
蛋白质含量
Protein content
-4.170 0.169 -24.732 2.00E-16
含水量
Water content
0.694 0.091 7.670 1.94E-13
直链淀粉含量
Amylose content
-0.821 0.070 -11.786 2.00E-16
[1] 张坚勇, 肖应辉, 万向元, 等. 水稻品种外观品质性状稳定性分析. 作物学报, 2004, 30(6):548-554.
[2] 张坚勇, 万向元, 肖应辉, 等. 水稻品种食味品质性状稳定性分析. 中国农业科学, 2004, 37(6):788-794.
[3] 韩波. 稻乡五常打造最具竞争力稻米产业. 黑龙江日报,2021-06- 25(6).
[4] 张玉华. 稻米的碾磨品质及其影响因素. 中国农学通报, 2003 (1):101-158.
[5] 李天真. 稻米碾米品质及相关因素影响的研究进展. 浙江农业科学, 2005(3):161-168.
[6] Fan C C, Xing Y Z, Mao H L, et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6):1164-1171.
doi: 10.1007/s00122-006-0218-1
[7] Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E 3 ubiquitin ligase. Nature Genetics, 2007, 39(5):623-630.
doi: 10.1038/ng2014
[8] 曹志斌, 李瑶, 曾博虹, 等. 非洲栽培稻垩白粒率耐热性QTL的定位. 中国水稻科学, 2020, 34(2):135-142.
doi: 10.16819/j.1001-7216.2020.9086
[9] 沈鹏, 罗秋香, 金正勋. 稻米蛋白质与蒸煮食味品质关系研究. 东北农业大学学报, 2003, 34(4):378-381.
[10] Peng Y, Mao B, Zhang C, et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chemistry, 2021, 353:129461.
doi: 10.1016/j.foodchem.2021.129461
[11] 周维, 郝小雨, 曹黎颖. 硅肥在五常稻花香水稻上的应用试验研究. 肥料与健康, 2020, 47(2):32-35.
[12] Wang Y X, Frei M, Song Q L, et al. The impact of atmospheric CO2 concentration enrichment on rice quality-A research review. Acta Ecologica Sinica, 2011, 31:277-282.
doi: 10.1016/j.chnaes.2011.09.006
[13] 景立权, 户少武, 穆海蓉, 等. 大气环境变化导致水稻品质总体变劣. 中国农业科学, 2018, 51(13):2462-2475.
doi: 10.3864/j.issn.0578-1752.2018.13.003
[14] 胡月, 郭晓红, 李猛, 等. 栽培模式对寒地水稻产量和营养品质的影响. 河南农业科学, 2019, 48(3):17-24.
[15] 魏晓东, 张亚东, 宋雪梅, 等. 硅镁锌肥改善稻米品质的研究进展. 江苏农业学报, 2021, 37(3):783-788.
[16] 三上隆司. 水稻检测仪器的开发与利用. 北方水稻, 2008, 38(5):78-80.
[17] 三上隆司, 河野元信. 日本大米食味评价方法及相关仪器应用现状. 北方水稻, 2007(5):10-12.
[18] 马会珍, 陈心怡, 王志杰, 等. 中国部分优质粳稻外观及蒸煮食味品质特征比较. 中国农业科学, 2021, 54(7):1338-1353.
doi: 10.3864/j.issn.0578-1752.2021.07.003
[19] 殷春渊, 王书玉, 刘贺梅, 等. 水稻食味品质性状间相关性分析及其与叶片光合作用的关系. 中国农业科技导报, 2021, 23(4):119-127.
doi: 10.13304/j.nykjdb.2020.0218
[20] 荆瑞勇, 卫佳琪, 王丽艳, 等. 基于主成分分析的不同水稻品种品质综合评价. 食品科学, 2020, 41(24):179-184.
[21] 陈重远, 张大双, 张习春, 等. 基于主成分分析和聚类分析对籼稻资源品质性状的综合评价. 分子植物育种, 2021, 19(24):8330-8340.
[22] 丁得亮, 张欣, 张艳, 等. 市场粳米食味品质及外观品质性状间的相关关系. 安徽农业科学, 2010, 38(9):4454-4456.
[23] 任鄄胜, 汪秀志, 肖培村, 等. 杂交水稻稻米品质性状的相关及聚类分析. 中国水稻科学, 2004, 18(2):44-48.
[24] Furukawa S, Mizuma T, Kiyokawa Y, et al. Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent antibody. Journal of Bioscience and Bioengineering, 2003, 96(5):467-473.
pmid: 16233557
[25] Lamberts L, Bie E D, Vandeputte G E, et al. Effect of milling on colour and nutritional properties of rice. Food Chemistry, 2007, 100(4):1496-1503.
doi: 10.1016/j.foodchem.2005.11.042
[26] Baxter G, Zhao J, Blanchard C. Albumin significantly affects pasting and textural characteristics of rice flour. Cereal Chemistry, 2010, 87(3):250-255.
doi: 10.1094/CCHEM-87-3-0250
[27] 徐正进, 韩勇, 邵国军, 等. 东北三省水稻品质性状比较研究. 中国水稻科学, 2010, 24(5):531-534.
doi: 10.3969/j.issn.1001-7216.2010.05.015
[28] 李茂柏, 王萃, 顾玉龙, 等. 上海软米品种品质性状分析与评价. 中国稻米, 2021, 27(2):77-79.
doi: 10.3969/j.issn.1006-8082.2021.02.016
[29] 殷坤, 刘金明, 张东杰, 等. 基于近红外光谱的大米蛋白质含量快速检测. 食品与机械, 2021, 37(5):82-88.
[30] Chen L J, Yang Z L, Han L J. A review on the use of near-infrared spectroscopy for analyzing feed protein materials. Applied Spectroscopy Reviews, 2013, 48(7):509-522.
doi: 10.1080/05704928.2012.756403
[31] 唐绍清, 石春海, 焦桂爱, 等. 利用近红外反射光谱技术测定稻米中脂肪含量的研究初报. 中国水稻科学, 2004, 18(6):563-566.
[1] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
[2] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[3] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[4] Chen Zhongdu, Xu Chunchun, Ji Long, Fang Fuping. Carbon and Nitrogen Footprints of Double Rice Production in Yangtze River Based on Farm Survey Data——A Case Study of Jiangxi and Hunan [J]. Crops, 2023, 39(2): 229-237.
[5] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[6] Tang Zhongjie, Xie Deyi, Xu Shouming, Nie Lihong, Lü Shuping, Wang Mingkun. Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020 [J]. Crops, 2023, 39(2): 77-82.
[7] Wang Wenxia, Wu Ziming, Zeng Yongjun, Pan Xiaohua, Shi Qinghua, Zeng Yanhua. Regulatory Effects of Water-Nitrogen Coupling on Low Temperature Chilling Damage of Direct-Seeded Early Indica Rice at Seedling Stage [J]. Crops, 2023, 39(2): 83-90.
[8] Yuan Shuai, Su Yuting, Chen Pingping, Yi Zhenxie. Effects of Nitrogen Management on Yield Formation and Rice Quality of Double Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2023, 39(2): 91-99.
[9] Xia Yuying, Wang Zhijun, Li Hongyu, Hu Chuanjun, Lü Yandong, Zhao Haicheng, Zheng Guiping. Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region [J]. Crops, 2023, 39(1): 103-108.
[10] Yu Yongtao, Zhang Nan, Xie Lihua, Li Guangyu, Liu Jianhua, Li Wu, Li Gaoke, Hu Jianguang. A Preliminary Study on Preference of Consumers in Eating Quality Evaluation of Sweet Corn Germplasms [J]. Crops, 2023, 39(1): 14-19.
[11] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[12] Wu Zishuai, Liu Guanglin, Li Hu, Luo Qunchang, Chen Chuanhua, Zhu Qi’nan. Effects of Nitrogen Application Rate on Rice Quality of High Quality Conventional Indica Rice [J]. Crops, 2023, 39(1): 84-88.
[13] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[14] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[15] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!