Crops ›› 2023, Vol. 39 ›› Issue (2): 51-56.doi: 10.16035/j.issn.1001-7283.2023.02.008

Previous Articles     Next Articles

Adaptability Analysis of High-Quality Rapeseed Dadi 95 in Main Agricultural Areas in Tibet

Zhao Caixia(), Yuan Yuting   

  1. Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, Tibet, China
  • Received:2021-11-03 Revised:2022-01-21 Online:2023-04-15 Published:2023-04-11

Abstract:

In order to study the adaptability of high-quality rapeseed Dadi 95 in the main agricultural areas of Tibet, ten counties and cities were tested including Lhasa, Duilong, Mozhu, Gongga, Zhanang, Bailang, Lhatse, Qamdo, Nyingchi, and Ali, studied agronomic traits and yield, and analyzed economic benefits of Dadi 95. The results showed that Dadi 95 could grow normally at the altitude of 3100-4000m in Tibet. The agronomic traits of different demonstration sites were quite different from 2014 to 2020, the total output was 1475.51t, the total economic benefit was 11.8040 million yuan, significantly more efficient than the control variety. In short, Dadi 95 was suitable for the ecological conditions of Tibet's main agricultural areas. The promotion and application of Dadi 95 would improve planting efficiency and promote the stable development of high-quality rapeseed industry in Tibet.

Key words: Rapeseed, Dadi 95, Adaptability, Economic benefits

Table 1

Main meteorological factors at the test sites"

气象因子
Meteorological factor
拉萨
Lhasa
堆龙
Duilong
墨竹
Mozhu
贡嘎县
Gongga
扎囊县
Zhanang
白朗县
Bailang
拉孜县
Lhatse
林芝
Nyingchi
昌都
Qamdo
阿里
Ali
经度Longitude (E) 91°06′ 91°07′ 92°34′ 90°98′ 91°33′ 88°89′ 87°24′ 95°28′ 97°18′ 80°10′
纬度Latitude (N) 29°36′ 29°62′ 29°83′ 29°30′ 28°81′ 28°67′ 28°47′ 28°46′ 31°13′ 32°50′
海拔Elevation (m) 3650 3850 3900 3810 3720 3890 3940 3100 3500 4000
降水量Precipitation (mm) 355.0 413.0 502.0 345.0 336.0 289.0 305.0 650.0 477.7 172.8
极端低温Extreme low temperature (℃) -7.0 -5.0 -12.0 -4.0 -7.0 -5.0 -25.1 -8.0 -6.0 -27.5
极端高温Extreme high temperature (℃) 31.0 30.0 16.0 28.0 28.0 26.0 28.2 26.0 18.0 26.5
平均温度Average temperature (℃) 12.0 13.0 8.0 13.0 10.0 10.0 7.0 8.7 7.5 3.0
平均蒸发量Average evaporation (mm) 1747.0 1437.0 1322.0 2035.0 2079.0 2240.0 1860.0 1551.3 1971.3 2445.1
日照时长The sunshine duration (h) 2700.0 2251.0 2850.0 2555.0 2474.0 2560.0 2866.5 2022.2 2400.0 3153.2

Table 2

The demonstration area of Dadi 95 in each demonstration site from 2014 to 2020 hm2"

示范点
Demonstration site
示范面积Demonstration area 合计
Total
2014 2015 2016 2017 2018 2019 2020
拉萨Lhasa 0.07 0.07 0.13 0.13 0.13 0.13 0.13 0.79
堆龙Duilong 1.33 6.67 13.30 16.70 20.00 20.67 78.67
墨竹Mozhu 3.33 13.30 13.30 16.70 18.67 65.30
贡嘎县Gongga 3.33 6.67 20.00 26.70 30.00 60.70 147.40
扎囊县Zhanang 3.33 13.30 26.70 26.70 26.70 37.30 134.03
白朗县Bailang 3.33 16.70 16.70 16.70 6.67 60.10
拉孜县Lhatse 0.67 6.67 10.00 13.30 30.64
林芝Nyingchi 1.33 6.67 13.30 37.30 58.60
昌都Qamdo 0.67 3.33 3.33 53.30 60.63
阿里Ali 0.67 0.80 1.00 2.47
合计Total 0.07 8.06 33.43 92.80 117.57 137.66 249.04 638.63

Table 3

Analysis on agronomic characters of demonstration site of Dadi 95 in different years (2014-2020)"

示范点
Demonstration site
全生育期
Growth
period (d)
株高
Plant
height (m)
分枝高度
Branch
height (m)
分枝数
Number of
branches
单株角果数
Number of siliques
per plant
每角粒数
Seed number
per pod
千粒重
1000-seed
weight (g)
单株产量
Yield per
plant (g)
拉萨Lhasa 135dC 168.20aA 61.50abAB 5.60aA 186.32aA 29.78aA 4.60bcB 13.00aA
堆龙Duilong 138cB 147.08deC 56.51cB 4.30cdD 146.38dD 21.21bcB 4.65bcB 9.20cBC
墨竹Mozhu 140bcB 149.10dC 46.70dC 4.10dD 112.01eE 20.89cdB 4.86abA 8.50cBC
贡嘎县Gongga 138cC 160.00bB 60.31abAB 5.20bB 176.70bB 27.70aA 4.45bcB 10.99bAB
扎囊县Zhanang 138cC 157.12cB 61.33abAB 5.51aA 182.12aA 28.11aA 4.30bcB 12.55aA
白朗县Bailang 140bcB 145.13eC 48.04dC 4.78cC 140.80dD 20.42bB 4.86abA 8.90cBC
拉孜县Lhatse 145bB 149.10dC 42.00dC 4.11dD 108.62eE 18.60dC 4.96abA 7.58cC
林芝Nyingchi 132dC 163.22abA 59.39abAB 5.40abA 185.65aA 26.82bAB 4.05dC 12.85aA
昌都Qamdo 138cC 165.31aA 58.20abAB 5.10bB 162.30cC 23.88cB 4.30bcB 11.05abAB
阿里Ali 155aA 122.70fD 38.70eD 2.40fE 88.70fF 15.43eD 5.10aA 6.58dD
变异幅度Variation range 132~155 122.70~168.20 38.70~61.50 2.40~5.60 88.70~186.32 15.43~29.78 4.05~5.10 6.58~13.00
均值Mean 139.90±6.28 152.69±13.32 53.27±8.59 4.65±0.97 148.96±35.72 23.28±4.71 4.61±0.34 10.12±2.29
变异系数Variable coefficient (%) 4.49 8.73 16.13 20.91 23.98 20.23 7.30 22.63

Table 4

Analysis on the output of the demonstration site of Dadi 95 from 2014 to 2020"

示范点
Demonstration site
品种
Variety
折合产量
Equivalent yield (kg/hm2)
比对照增产
Increase production compared to control (%)
位次
Rank
拉萨Lhasa 大地95 3438.45aA 14.21 1
山油2号(CK) 3010.65
堆龙Duilong 大地95 2155.35cC 8.45 5
山油2号(CK) 1987.50
墨竹Mozhu 大地95 1924.65deD 13.95 8
当地油菜(CK) 1689.00
贡嘎县Gongga 大地95 2440.15bcBC 5.22 4
山油2号(CK) 2319.00
扎囊县Zhanang 大地95 2709.45bB 9.43 2
山油2号(CK) 2476.00
白朗县Bailang 大地95 2094.45dD 26.59 7
当地油菜(CK) 1654.50
拉孜县Lhatse 大地95 1659.30fF 15.95 9
当地油菜(CK) 1431.00
林芝Nyingchi 大地95 2453.00bcBC 5.32 3
山油2号(CK) 2329.00
昌都Qamdo 大地95 2148.00cC 4.91 6
山油2号(CK) 2047.50
阿里Ali 大地95 1630.05fE 13.91 10
当地油菜(CK) 1431.00

Table 5

Comparative analysis of quality traits of Dadi 95 in different demonstration sites (2014-2020)"

示范点
Demonstration site
含油量Oil content (%) 硫苷Thioglycoside (μmol/g) 芥酸Erucic acid (%)
大地95
Dadi 95
对照品种
Check variety
大地95
Dadi 95
对照品种
Check variety
大地95
Dadi 95
对照品种
Check variety
拉萨Lhasa 47.12 45.82 25.44 58.61 0.41 17.23
堆龙Duilong 48.31 46.55 29.62 62.38 0.92 18.14
墨竹Mozhu 48.81 41.22 31.23 95.97 4.31 31.92
贡嘎县Gongga 47.55 46.51 27.64 60.56 1.52 17.64
扎囊县Zhanang 48.62 47.03 28.71 58.45 1.43 17.92
白朗县Bailang 49.61 39.82 30.22 96.26 5.21 35.25
拉孜县Lhatse 49.32 40.26 30.42 98.31 5.55 36.16
林芝Nyingchi 48.56 45.91 29.44 55.32 0.71 16.81
昌都Qamdo 47.21 46.24 27.35 56.43 1.82 17.21
阿里Ali 50.32 41.56 32.41 101.38 4.52 37.31
变异幅度Variation range 47.12~50.32 39.82~47.03 25.44~32.41 55.32~101.38 0.41~5.55 16.81~37.31
均值Mean value 48.54±1.04 44.09±2.96 29.25±2.04 74.36±20.47 2.64±2.01 24.56±9.23
变异系数Variable coefficient (%) 2.15 6.72 6.97 27.53 76.22 37.58

Table 6

Analysis of the economic benefits of Dadi 95 in various demonstration sites"

示范点
Demonstration site
示范面积
Promotion
area (hm2)
平均产量
Average
yield (kg/hm2)
总产量
Total
yield (t)
增产
Increase
yield (t)
总经济效益(万元)
Total economic
benefit (×104 yuan)
新增经济效益(万元)
Increase economic
benefits (×104 yuan)
拉萨Lhasa 0.79 3438.45 2.72 0.39 2.17 0.31
堆龙Duilong 78.67 2155.35 169.56 14.33 135.65 11.46
墨竹Mozhu 65.30 1924.65 125.68 17.53 100.54 14.03
贡嘎县Gongga 147.40 2440.15 359.68 18.78 287.74 15.02
扎囊县Zhanang 134.03 2709.45 363.15 34.14 290.52 27.31
白朗县Bailang 60.10 2094.45 125.88 33.47 100.70 26.78
拉孜县Lhatse 30.64 1659.30 50.84 8.11 40.67 6.49
林芝Nyingchi 58.60 2453.00 143.75 7.65 115.00 6.12
昌都Qamdo 60.63 2148.00 130.23 6.39 104.19 5.12
阿里Ali 2.47 1630.05 4.03 0.56 3.22 0.45
合计Total 638.63 2265.29 1475.51 141.34 1180.40 113.07
[1] 张学昆, 张毅, 谷铁城, 等. 我国油菜品种审定工作回顾与展望. 中国农作物品种审定30年论文集. 北京: 中国农业科学技术出版社, 2015:106-110.
[2] 王佳友, 何秀荣, 王茵. 中国油脂油料进口替代关系的计量经济研究. 统计与信息论坛, 2017, 32(5):69-75.
[3] 旦巴, 孟霞, 德吉美朵, 等. 甘蓝型双低油菜品种华杂3号在林芝地区的生态适应性研究. 西藏科技, 2003(2):16-18.
[4] 张毅, 马跃峰, 贠民政, 等. 近30年西藏地区耕地面积及主要农作物时空变化特征. 高原农业, 2020, 4(1):17-25.
[5] 王晋雄, 袁玉婷, 尼玛次仁. 双低油菜新品种大地95区域适应性研究. 西藏农业科技, 2019, 41(增1):27-32.
[6] 刘海卿, 孙万仓, 刘自刚, 等. 北方旱寒区白菜型冬油菜品种抗寒性与适应性分析. 西北农业学报, 2014, 23(6):109-117.
[7] 田恩堂, 刘坤, 叶波涛, 等. 芥菜型油菜重组自交系群体重要品质性状的遗传分析. 种子, 2017, 36(8):1-5.
[8] 浦惠明, 龙卫华, 刘雪基, 等. 油菜不同种植方式成本及效益比较分析. 江苏农业科学, 2015, 43(12):558-562.
[9] 张毅. 我国冬油菜区域试验品种的高产稳产和适应性分析. 中国油料作物学报, 2018, 40(3):359-366.
[10] 许乃银, 张国伟, 李健, 等. 基于GGE 双标图和比强度选择的棉花品种生态区划分. 中国生态农业学报, 2012, 20(11):1500-1507.
[11] Gunasekera C P, Martin L D, Siddique K H M, et al. Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (Brassica napus L.) in Mediterranean type environments II. Oil and protein concentrations in seed. European Journal of Agronomy, 2006, 25(1):13-21.
doi: 10.1016/j.eja.2006.02.001
[12] Si P, Walton G H. Determinants of oil concentration and seed yield in canola and Indian mustard in the lower rainfall areas of Western Australia. Australian Journal of Agricultural Research, 2004, 55(3):367-377.
doi: 10.1071/AR03151
[13] Abay F, Bjornstad A. Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica, 2009, 167(2):181-195.
doi: 10.1007/s10681-008-9858-3
[14] Berger J D, Ali M, Basu P S, et al. Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Research, 2006, 98(2/3):230-244.
doi: 10.1016/j.fcr.2006.02.007
[15] 蒙祖庆, 次仁央金, 宋丰萍, 等. 西藏高原环境下印度芥菜型油菜农艺性状的典型相关分析. 中国生态农业学报, 2012, 20(2):242-246.
[16] 袁玉婷, 尼玛次仁, 赵彩霞, 等. 京华165在西藏主要农区的推广应用. 西藏农业科技, 2021, 43(1):61-64.
[1] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[2] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[3] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[4] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[5] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
[6] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[7] Xiong Tinghao, Zi Tao, Zhang Ai, Hu Yuqian, Peng Zhi, Song Haixing. Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction [J]. Crops, 2021, 37(3): 133-139.
[8] Qin Lu, Wang Jianqiang, Han Peipei, Li Yinshui, Gu Chiming, Hu Xiaojia, Xie Lihua, Liao Xing. Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency [J]. Crops, 2021, 37(3): 28-33.
[9] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[10] Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29.
[11] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[12] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[13] Liu Xiaoya,Zhang Lifeng,Zhang Jizong,Shi Wenbin,Zhang Peiyue. Adapt Ability of Brassica napus to Cold Environment in Bashang of North China [J]. Crops, 2019, 35(5): 97-103.
[14] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[15] Cai Dongfang,Wang Jianping,Zhang Shufen,He Junping,Cao Jinhua,Wen Yancheng,Zhao Lei,Wang Dongguo,Zhu Jiacheng. Effects of N, P and K Fertilization on Rapeseed Yield in Different Rotating Areas of Henan Province [J]. Crops, 2018, 34(6): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!