Crops ›› 2023, Vol. 39 ›› Issue (4): 253-259.doi: 10.16035/j.issn.1001-7283.2023.04.036

Previous Articles     Next Articles

Research on the Moisture Content Variation and Influence to Rice Seed Germination under Salt and Alkali Stress by Low Field NMR

Yang Hongwei1,2(), Zhang Liying3, Li Xiaohui1,2()   

  1. 1College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang 110866, Liaoning, China
    3Liaoning Rice Research Institute, Shenyang 110161, Liaoning, China
  • Received:2022-03-06 Revised:2022-05-26 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to study the change of moisture content and its effects on the rice seeds germination under salt and alkali stress, and the feasibility of using low field nuclear magnetic detection technology to determine seed moisture content, two varieties (Yanjing 48 and Liaoxing 1) of rice seeds were placed in culture dish with the solution of 50, 150mmol/L NaCl, NaHCO3 and distilled water (control) respectively, nuclear magnetic resonance signal amplitude variation and effects of different solutions on germination characteristics were analyzed, and the regression equation was deduced between NMR signal amplitude per unit mass rice seed samples and the wet base moisture content. The results showed that the nuclear magnetic signal amplitudes of the two varieties of rice seeds increased by 65%, 95%, 115% and 135% respectively after seeds germination 6, 22, 48, and 72h compared with control treatment. After germination for the same time, the amplitude of NMR signal decreased by more than 5% under NaCl and NaHCO3 stress, the germination index decreased by more than 4.5% compared with the control treatment, indicating that there was a positive correlation between moisture content and seed germination index. There was a consistent linear correlation between NMR signal amplitude per unit mass and the wet base moisture content under different NaCl and NaHCO3 stress, R2 were all greater than 0.95. The results showed that it was reasonable and reliable to measure the water content of rice seeds under salt and alkali stress by nuclear magnetic resonance technology.

Key words: Nuclear magnetic resonance relaxation spectrum, Salt stress, Alkali stress, Rice seeds, Wet base moisture content

Table 1

Comparison of germination indexes of rice seed under NaCl and NaHCO3 stress"

水稻品种
Rice variety
处理
Treatment
溶液浓度
Solution concentration
(mmol/L)
平均发芽时间
Mean germination
time (d)
发芽指数
Germination
index
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
盐粳48 YJ48 对照 0 2.05±0.05cC 24.67±0.29aA 97.33±2.31aA 100.00±0.00aA
NaCl胁迫 50 2.82±0.03bB 18.41±0.11bB 97.33±2.31aA 100.00±0.00aA
150 3.05±0.05aAB 16.22±0.49cC 86.00±2.00bB 98.67±1.15aA
NaHCO3胁迫 50 2.99±0.08abAB 16.02±0.40cC 95.83±3.82aA 97.50±3.00abA
150 3.19±0.19aA 14.28±0.40dD 88.33±1.44bB 94.17±4.00bA
辽星1 LX1 对照 0 2.50±0.04cC 20.89±0.18aA 90.48±2.36aA 98.00±0.00aA
NaCl胁迫 50 3.05±0.04bB 16.37±0.37bB 92.56±1.26aA 98.00±2.00aA
150 4.41±0.10aA 10.03±0.28dD 88.26±1.37cC 93.33±4.16bB
NaHCO3胁迫 50 3.38±0.05bB 14.28±0.21cC 92.50.±2.50aA 96.67±1.00aA
150 4.53±0.07aA 9.82±0.17dD 38.33.±1.44bB 88.33±1.00cC

Fig.1

T2 inversion spectrum of per unit mass YJ48 seed s under NaCl stress"

Fig.2

T2 inversion spectrum of per unit mass YJ48 seeds under NaHCO3 stress"

Table 2

NMR signal amplitude (A21 and A22) per unit mass YJ48 under NaCl and NaHCO3 stress"

溶液
Solution
萌发时间
Germination time (h)
对照CK 50mmol/L 150mmol/L
A21 A22 A21 A22 A21 A22
NaCl 初始 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE
6 7594.0±103.3dD 842.2±37.9dD 7331.2±95.4dD 829.5±31.9dD 7289.6±76.2dD 854.3±45.2dD
24 8874.6±102.3cC 1052.7±29.8cC 8868.8±73.3cC 1026.0±46.4cC 8809.8±90.6cC 1028.5±51.5cC
48 9248.3±132.1bB 1806.6±53.3bB 9319.0±73.9bB 1725.2±45.8bB 9510.3±73.5bB 1180.3±82.4bB
72 9059.4±104.5aA 3023.0±151.1aA 9458.0±122.0aA 2523.1±132.5aA 9055.4±128.2aA 1979.9±80.1aA
NaHCO3 初始 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE 4497.0±58.6eE 408.6±8.3eE
6 7594.0±103.3dD 842.2±37.9dD 7394.4±85.6dD 846.2±42.1dD 7365.4±68.5dD 862.3±44.8dD
24 8874.6±102.3cC 1052.7±29.8cC 8885.4±71.6cC 1039.9±43.2cC 8829.7±85.3cC 1040.3±50.2cC
48 9248.3±132.1bB 1806.6±53.3bB 9307.1±72.8bB 1745.1±46.3bB 9103.2±65.3bB 1649.3±78.7bB
72 9059.4±104.5aA 3023.0±151.1aA 9487.8±118.6aA 2568.3±127.5aA 9369.9±116.7aA 2082.8±76.8aA

Table 3

NMR signal amplitude (A21 and A22) per unit mass LX1 under NaCl and NaHCO3 stress"

溶液
Solution
萌发时间
Germination time (h)
对照CK 50mmol/L 150mmol/L
A21 A22 A21 A22 A21 A22
NaCl 初始 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE
6 6890.9±86.5dD 708.3±32.8dD 6774.1±41.6dD 733.5±38.8dD 6733.5±107.6dD 743.2±22.4dD
24 8062.9±68.6cC 806.4±50.7cC 8011.5±130.8cC 827.7±32.0cC 8013.9±93.7cC 824.5±27.0cC
48 8970.2±80.2bB 1252.5±48.7bB 8668.3±103.9bB 1217.0±46.6bB 8756.7±138.2bB 983.0±25.6bB
72 8603.4±116.1aA 2050.5±94.8aA 8920.2±134.8aA 1682.4±88.2aA 8918.4±51.3aA 1265.3±56.1aA
NaHCO3 初始 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE 4381.1±49.0eE 267.4±4.0eE
6 6890.9±86.5dD 708.3±32.8dD 6775.1±40.8dD 736.5±36.7dD 6747.5±98.6dD 746.2±20.8dD
24 8062.9±68.6cC 806.4±50.7cC 8024.2±105.2cC 829.7±37.6cC 8021.5±89.2cC 828.0±22.5cC
48 8970.2±80.2bB 1252.5±48.7bB 8717.7±98.2bB 1226.3±42.8bB 8790.4±125.6bB 1011.9±21.2bB
72 8603.4±116.1aA 2050.5±94.8aA 8923.7±102.7aA 1701.3±75.9aA 8947.9±48.2aA 1274.5±20.9aA

Fig.3

Comparison of NMR signal amplitude of per unit mass YJ48 seeds after germination 6, 24, 48, 72h under NaCl and NaHCO3 stress The different capital and lowercase letters indicate significant difference at 0.01 and 0.05 levels, respectively"

Fig.4

Regression between MC and NMR signal amplitude of per unit mass YJ48 seeds under NaCl stress"

Fig.5

Regression between MC and NMR signal amplitude of per unit mass YJ48 seeds under NaHCO3 stress"

[1] 王海莲, 张华文, 刘宾, 等. 低度盐胁迫下高粱苗期相关性状的QTL定位. 分子植物育种, 2017, 15(2):604-610.
[2] Han L, Liu H, Yu S, et al. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil. Ecological Engineering, 2013, 61:274-281.
doi: 10.1016/j.ecoleng.2013.09.034
[3] Alvarez-Acosta C, Marrero-Dominguez A, Gallo-Llobet L, et al. Physiological response of selected avocados (Persea americana) subjected to NaCl and NaHCO3 stress. Scientia Horticulturae, 2018, 237:81-88.
doi: 10.1016/j.scienta.2018.04.010
[4] Yan W, Gang Q J, Yin N H, et al. Effects of salt, alkali and salt- alkali mixed stresses on seed germination of the halophyte Salsola ferganica (Chenopodiaceae). Acta Ecologica Sinica, 2013, 33(6):354-360.
doi: 10.1016/j.chnaes.2013.09.010
[5] Fan X D, Wang J Q, Yang N, et al. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene, 2013, 512(2):392-402.
doi: 10.1016/j.gene.2012.09.100
[6] Lin J, Yu D, Shi Y, et al. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China. Ecological Engineering, 2016, 95:763-769.
doi: 10.1016/j.ecoleng.2016.07.011
[7] Wang F, Xiao H L, Peng X M, et al. Effects of salt and alkali stress on Reaumuria soongorica germination. Sciences in Cold and Arid Regions, 2017, 9(2):158-166.
[8] Guo R, Zhou J, Ren G X, et al. Physiological responses of linseed seedlings to iso osmotic polyethylene glycol, salt, and alkali stresses. Agronomy Journal, 2013, 105(3):764-772.
doi: 10.2134/agronj2012.0442
[9] 李双男, 郭慧娟, 王晶, 等. 不同盐碱胁迫对棉花种子萌发的影响. 种子, 2018, 37(1):38-45.
[10] 刘建新, 王金成, 王瑞娟, 等. 盐、碱胁迫对燕麦幼苗光合作用的影响. 干旱地区农业研究, 2015, 33(6):155-160.
[11] Gong B, Wen D, Bloszies S, et al. Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status,and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014, 36(8):2167-2181.
doi: 10.1007/s11738-014-1593-x
[12] Gong B, Dan W, Vandenlangenberg K, et al. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 2013, 157(3):1-12.
doi: 10.1016/j.scienta.2013.03.032
[13] 季平, 张鹏, 徐克章, 等. 不同类型盐碱胁迫对大豆植株生长性状和产量的影响. 大豆科学, 2013, 32(4):477-481.
[14] Lin J, Shao S, Wang Y, et al. Germination responses of the halophyte Chloris virgata to temperature and reduced water potential caused by salinity, alkalinity and drought stress. Grass and Forage Science, 2016, 71(3):507-514.
doi: 10.1111/gfs.2016.71.issue-3
[15] 张彦妮, 李博, 何淼. 盐胁迫对大花飞燕草种子萌发的影响. 草业科学, 2012, 29(8):1235-1239.
[16] Zhang H, Zhang G, Lü X, et al. Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant and Soil, 2015, 388(1/2):229-241.
doi: 10.1007/s11104-014-2322-3
[17] He L, Lin B, Hong Y, et al. Assessing the moisture migration during microwave drying of coal using low-field nuclear magnetic resonance. Drying Technology, 2017, 36(5):1-11.
doi: 10.1080/07373937.2017.1326130
[18] 要世瑾, 杜光源, 牟红梅, 等. 基于核磁共振技术检测小麦植株水分分布和变化规律. 农业工程学报, 2014, 30(24):177- 186.
[19] 牟红梅, 何建强, 邢建军, 等. 小麦灌浆过程籽粒水分变化的核磁共振检测. 农业工程学报, 2016, 32(8):98-104.
[20] Qiu Q Z, Wei L, Hao K L, et al. Low-field nuclear magnetic resonance for online determination of water content during sausage fermentation. Journal of Food Engineering, 2017, 212:291-297.
doi: 10.1016/j.jfoodeng.2017.05.021
[21] Sandnes R, Simon S, Sjöblom J, et al. Optimization and validation of low field nuclear magnetic resonance sequences to determine low water contents and water profiles in W/O emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441(3):441-448.
doi: 10.1016/j.colsurfa.2013.09.030
[1] Zhang Hanwen, Liu Dan, Wang Xuerui, Li Wangshu, Lu Qiang, Wang Shufeng, Zhao Jianan, Wang Yubo, Zhang He, Li Caifeng. Effects of Superimposed Application of BR in Different Periods on Yield and Quality of Sugar Beet under Saline-Alkali Stress [J]. Crops, 2023, 39(4): 237-244.
[2] Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194.
[3] Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26.
[4] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[5] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[6] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[7] Hou Xue, Chen Yujie, Li Chunmiao, Fang Shumei, Liang Xilong, Zheng Dianfeng. Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress [J]. Crops, 2022, 38(6): 174-180.
[8] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[9] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[10] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[11] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[12] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[13] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[14] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
[15] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!