Crops ›› 2023, Vol. 39 ›› Issue (5): 104-109.doi: 10.16035/j.issn.1001-7283.2023.05.015

Previous Articles     Next Articles

The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L.

Wang Zhenlong1,2(), Su Cuicui1,2, Zhou Qi1,2, Deng Chaochao1,2, Zhou Yanfang1,2()   

  1. 1Gansu Academy of Agri-Engineering Technology, Wuwei 733000, Gansu, China
    2Wuwei Farmland Soil Improvement and Farmland Conservation Technology Innovation Center, Wuwei 733006, Gansu, China
  • Received:2023-06-06 Revised:2023-07-20 Online:2023-10-15 Published:2023-10-16

Abstract:

In order to reveal the effects of nitrogen fertilizer reduction and organic fertilizer combination on soil fertility index and yield and quality of H.tuberosus, the chemical and physical properties of soil and yield and quality of H.tuberosus in Hexi region of Gansu province were measured, and analyzed for two consecutive years. Four treatments were set, no fertilization (CK), single application of chemical fertilizer, 25% reduction of nitrogen by chemical fertilizer+bio-organic fertilizer, and 50% reduction of nitrogen by chemical fertilizer+bio- organic fertilizer. The results showed that the treatment of reducing nitrogen with chemical fertilizers combined with organic fertilizers could significantly increase soil nutrient content, reduced soil bulk density, and achieve the effects of improving quality and increasing yield. Among them, chemical fertilizer reducing nitrogen by 50%+bio-organic fertilizer had the best effect on soil improvement, with the most significant impact on plant height and stem diameter of H.tuberosus, and the largest increase in yield compared to CK. In the second year of the experiment, the yield reached the highest, reaching 60.69t/ha. The treatment of 25% nitrogen reduction with chemical fertilizer and bio-organic fertilizer had the most significant effects on promoting the increase of sugar content in H.tuberosus tubers, with the highest inulin content reaching 556.45 g/kg, with an annual average increase of 19.19%. There was no significant difference in inulin content compared to the treatment of 50% nitrogen reduction with bio-organic fertilizer. Based on the above, the combination of nitrogen reduction with bio-organic fertilizer was a safe and efficient fertilization method. The optimal fertilization plan was to reduce nitrogen by 50% with bio-organic fertilizer.

Key words: Helianthus tuberosus L., Organic fertilizer, Soil, Yield, Quality

Table 1

Experimental design and fertilizer amount kg/hm2"

处理Treatment 氮N 磷P2O5 钾K2O 有机肥Organic fertilizer
CK 0 0 0 0
T1 138 120 120 0
T2 103.5 120 120 1725
T3 69 120 120 3450

Table 2

Effects of different treatments on soil quality"

年份
Year
处理
Treatment
全氮
Total N (g/kg)
碱解氮
Available N (mg/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
有机质
Organic matter (g/kg)
容重
Unit weight (g/cm3)
2021 CK 0.45±0.01b 90.29±4.45c 30.94±2.57c 143.12±3.57c 7.67±0.64c 1.26±0.01a
T1 0.65±0.02a 138.87±2.05a 55.89±1.87b 166.00±4.98b 7.57±0.42c 1.16±0.01b
T2 0.62±0.01a 124.12±3.04b 65.68±1.95a 179.14±3.67ab 10.90±0.21b 1.10±0.04b
T3 0.60±0.01a 115.13±2.31b 69.77±0.97a 183.29±5.69a 12.63±0.66a 1.10±0.05b
2022 CK 0.45±0.01c 86.39±3.24c 31.74±2.87c 149.33±2.50c 6.77±0.26c 1.20±0.02a
T1 0.69±0.03b 189.19±6.06a 64.64±1.81b 171.39±2.25b 6.97±0.27c 1.13±0.01b
T2 0.73±0.01ab 166.76±5.92b 70.57±1.20b 183.72±3.01a 12.97±0.33b 1.08±0.05bc
T3 0.79±0.01a 160.81±3.47b 79.19±2.66a 192.07±5.39a 15.36±0.28a 1.03±0.03c

Table 3

Effects of different treatments on growth indicators and yield of H.tuberosus"

年份
Year
处理
Treatment
株高
Plant height (mm)
茎粗
Stem diameter (mm)
单株块茎数
Plant tuber number
单株块茎重
Tuber weight per plant (kg)
产量
Yield (t/hm2)
2021 CK 245.17±5.86b 21.33±1.21b 22.00±1.53b 1.14±0.11c 27.28±2.82c
T1 285.46±3.68a 23.97±1.79ab 26.00±2.60ab 1.57±0.22bc 37.43±5.33bc
T2 283.61±3.66a 25.73±1.38ab 30.00±1.45a 2.01±0.17ab 47.89±4.12ab
T3 278.35±3.54a 26.27±0.59a 29.00±0.58a 2.51±0.28a 59.89±6.59a
2022 CK 250.71±3.71c 21.54±1.11c 19.00±0.88b 1.16±0.11c 27.57±2.67c
T1 281.77±4.13b 24.11±0.53bc 25.00±1.33a 1.96±0.15b 46.59±3.49b
T2 298.67±6.12a 26.94±0.93ab 27.00±1.15a 2.27±0.19a 54.06±3.79a
T3 301.21±5.58a 27.97±1.31a 28.00±2.60a 2.55±0.26a 60.69±6.21a

Table 4

Effects of different treatments on the quality of H.tuberosus tubers g/kg"

年份
Year
处理
Treatment
总糖
Total sugar
还原糖
Reducing sugar
菊糖
Inulin
2021 CK 501.99±5.56c 45.74±0.94b 456.25±5.81c
T1 557.14±9.27b 46.18±0.17b 510.96±9.30b
T2 603.19±9.99a 48.84±0.33a 554.35±8.15a
T3 595.06±4.50a 48.30±0.54a 546.76±5.01a
2022 CK 515.92±8.83c 46.60±0.53b 469.32±7.01b
T1 557.61±7.83b 48.05±0.24b 509.56±6.52b
T2 607.84±5.34a 51.39±0.94a 556.45±5.43a
T3 605.35±6.66a 51.14±0.92a 554.21±6.26a
[1] 隆小华, 刘兆普, 陈铭达, 等. 半干旱地区海涂海水灌溉菊芋盐肥耦合效应的研究. 土壤学报, 2005, 42(1):91-97.
[2] 陈奇乐, 张益琛, 李智, 等. 张北坝上沙荒地菊芋建植技术. 中国蔬菜, 2020(3):105-106.
[3] 吕世奇. 半干旱区非粮能源植物菊芋高产形成机制及丰产栽培措施研究. 兰州:兰州大学, 2019.
[4] 赵孟良, 刘明池, 钟启文, 等. 29份菊芋种质资源氨基酸含量和营养价值评价. 种子, 2018, 37(3):55-60.
[5] 刘祖昕, 谢光辉. 菊芋作为能源植物的研究进展. 中国农业大学学报, 2012, 17(6):122-132.
[6] 王丽慧, 李屹, 赵孟良, 等. 刈割次数对菊芋生物量及营养价值影响研究. 饲料工业, 2015(3):12-15.
[7] 黄涛, 车宗贤, 赵欣楠, 等. 甘肃河西绿洲灌区农田耕层土壤养分调查与评价. 甘肃农业大学学报, 2021, 56(1):126-132.
[8] 高阳, 高凯, 王琳, 等. 科尔沁沙地两个菊芋品种叶片C,N,P化学计量特征. 草原与草坪, 2019, 39(4):72-77.
[9] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[10] 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料, 2016(4):1-8.
[11] 马祥, 贾志锋, 张永超, 等. 生物有机肥对青海高寒牧区燕麦产量和土壤肥力的影响. 草地学报, 2019, 27(6):1759-1765.
doi: 10.11733/j.issn.1007-0435.2019.06.036
[12] 康勇建, 赵宝平, 孙雯, 等. 化肥减施配合生物有机肥对土壤特性和燕麦产量的影响. 中国农学通报, 2021, 37(11):59-64.
doi: 10.11924/j.issn.1000-6850.casb2020-0231
[13] 王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量,酶活性和棉花产量的影响. 应用生态学报, 2020, 31(1):173-181.
doi: 10.13287/j.1001-9332.202001.022
[14] Qiao C, Penton C R, Xiong W, et al. Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Applied Soil Ecology, 2019, 142:136-146.
doi: 10.1016/j.apsoil.2019.04.014
[15] Geng Y, Wang J, Sun Z, et al. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma, 2021, 383:114730.
doi: 10.1016/j.geoderma.2020.114730
[16] 杨宁, 高凯, 赵力兴, 等. 不同供钾水平对菊芋产量和物质分配规律的影响. 内蒙古民族大学学报:自然科学版, 2021, 36(3):231-236.
[17] 顾鑫, 任翠梅, 杨丽, 等. 不同施氮水平对旱地菊芋生长及产量的影响. 北方园艺, 2017(22):108-112.
[18] 孙晓娥, 孟宪法, 刘兆普, 等. 氮磷互作对菊芋块茎产量和品质的影响. 生态学杂志, 2013, 32(2):363-367.
[19] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2007.
[20] 沃野, 黄佳媛, 杨宁, 等. 现蕾期磷添加对菊芋块茎产量及物质分配规律的影响. 草地学报, 2021, 29(7):1594-1598.
doi: 10.11733/j.issn.1007-0435.2021.07.029
[21] 李晓丹. 不同菊芋品种生育,产量及营养成分的比较. 哈尔滨:东北师范大学, 2014.
[22] Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 2017, 61(1):4-10.
doi: 10.2136/sssaj1997.03615995006100010001x
[23] 卢铁光, 杨广林, 王立坤. 基于相对土壤质量指数法的土壤质量变化评价与分析. 东北农业大学学报, 2003, 34(1):56-59.
[24] 廖育林, 郑圣先, 聂军, 等. 长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响. 中国农业科学, 2009, 42(10):3541-3550.
[25] 鲁艳红, 杨曾平, 郑圣先, 等. 长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响. 应用生态学报, 2010, 21(4):921-929.
[26] 肖让, 张永玲, 赵芸晨, 等. 化肥减量配施有机肥对日光温室土壤质量及茄子产量、品质的影响. 华北农学报, 2023, 38(2):188-198.
doi: 10.7668/hbnxb.20193466
[27] 刘瑜, 李萍, 赵凯丽, 等. 化肥减量配施生物有机肥对芹菜产量,品质和土壤养分的影响. 中国农学通报, 2023, 39(8):63-68.
doi: 10.11924/j.issn.1000-6850.casb2022-0256
[28] 王立刚, 李维炯, 邱建军, 等. 生物有机肥对作物生长、土壤肥力及产量的效应研究. 土壤肥料, 2004(5):12-16.
[29] 席凯鹏, 杨苏龙, 席吉龙, 等. 长期棉花秸秆配施有机肥对土壤理化性质及棉花产量的影响. 中国土壤与肥料, 2022(7):82-90.
[30] 甘泉峰, 黄婷, 李媛, 等. 有机无机肥配施对滨海脱盐土栽培菊芋及其养分吸收的影响. 土壤, 2023, 55(2):262-271.
[31] 杜二小. 氮肥减施与替代对土壤特性及马铃薯产量和品质的影响. 呼和浩特:内蒙古农业大学, 2022.
[32] 司若彤, 刘维, 林电. 有机肥部分替代化肥对台农芒果产量和品质的影响. 中国土壤与肥料, 2020(4):107-114.
[33] 刘鸣达, 王秋凝, 魏佳伦, 等. 羊粪―菇渣蚓粪与化肥配施对油麦菜产量及品质的影响. 生态学杂志, 2019, 38(6):1760-1766.
[34] Jia Y, Liao Z, Chew H, et al. Effect of Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer on the growth, quality, soil fertility and bacterial community of pakchoi (Brassica chinensis L.). PLoS ONE, 2020, 15(2).
[1] Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Zhang Xiangyun, Zhang Jianhong. QTL Mapping for Fiber Quality Traits Using Gossypium barbadense Chromosome Segment Introgression Lines [J]. Crops, 2023, 39(5): 1-9.
[2] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[3] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[4] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[5] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[6] Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156.
[7] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[8] Zhu Wenjuan, Ren Yuemei, Yang Zhong, Guo Ruifeng, Zhang Shou, Ren Guangbing. Structure and Predicted Functional Analysis of Microbial Community of Millet Soil [J]. Crops, 2023, 39(5): 170-178.
[9] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[10] Tian Xiaoqin, Wang Dan, Li Zhuo, Liu Yonghong, Li Wei. Effects of Ridge and Mulching on Yield and Water Use Efficiency of Rapeseed [J]. Crops, 2023, 39(5): 204-211.
[11] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[12] Zhao Weizhe, Du Chunfang, Sun Xuan, Yao Lin, Xian Shuanshi, Zhang Gaoyang. Effects of Stalk Picking on Economic Characteristics and Yield of Oilseed and Vegetable Rape [J]. Crops, 2023, 39(5): 224-230.
[13] Duan Junya, Zhao Yuanyuan, Peng Zhiliang, Zhang Yongfeng, Duan Weidong, Yang Qingxi, Wang Songling, Chen Xiaolong, Shi Hongzhi. Effects of Once-Over Harvesting Period on the Qualities of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi [J]. Crops, 2023, 39(5): 231-237.
[14] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[15] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!