Crops ›› 2023, Vol. 39 ›› Issue (5): 151-156.doi: 10.16035/j.issn.1001-7283.2023.05.022

Previous Articles     Next Articles

Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco

Liu Chen1(), Yang Mingfeng2, Yang Long1, Zhang Nan3, Yu Tao1()   

  1. 1College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, China
    2Shandong China Tobacco Industry Co., Ltd., Jinan 250014, Shandong, China
    3China Tobacco Company, State Tobacco Monopoly Administration, Beijing 100037, China
  • Received:2022-03-01 Revised:2022-07-21 Online:2023-10-15 Published:2023-10-16

Abstract:

In order to clarify the effects of wide-narrow row configuration on the growth and quality of upper leaves of flue-cured tobacco under the double-row concave ridge mode, taking NC102 as the experimental variety, three wide-narrow row planting treatments of T1 (wide row 1.2m, narrow row 1.0m), T2 (wide row 1.3m, narrow row 0.9m) and T3 (wide row 1.4m, narrow row 0.8m) were set, and the same row spacing planting(1.1m) was used as the control (CK). The effects of wide-narrow row configuration on agronomic traits, leaf tissue structure, senescence characteristics, carbon and nitrogen metabolism, chemical composition, sensory quality and economic traits of upper leaves under different double-row concave ridge modes were studied. The results showed that compared with CK, T2 treatment increased the leaf area and sponge tissue/fence tissue of upper leaves of flue-cured tobacco, decreased the length-width ratio and leaf thickness, and improved the agronomic traits and organizational structure of upper leaves. T2 and T3 treatments inhibited the activities of superoxide dismutase, peroxidase and catalase related to senescence characteristics of upper leaves, increased malondialdehyde content, and promoted physiological senescence and maturation; T2 treatment could reduce nitrate reductase activity, increase amylase and neutral invertase activities, improve carbon and nitrogen metabolism, reduce nicotine content of cured tobacco leaves, increase reducing sugar content, coordinate sugar-base ratio, improve sensory quality, and increase tobacco yield and output value. In summary, the wide-narrow row planting mode with a wide row of 1.3m and a narrow row of 0.9m was suitable for the double-row concave ridge planting mode to improve the growth and development of upper leaves of flue-cured tobacco.

Key words: Flue-cured tobacco, Double-row concave ridge, Wide-narrow row, Upper tobacco leaves, Growth and development, Quality

Fig.1

Cross section of double-row concave ridge"

Table 1

Effects of different wide-narrow row treatments in double-row concave ridge on agronomic traits of upper tobacco leaves"

年份Year 处理Treatment 叶长Leaf length (cm) 叶宽Leaf width (cm) 长宽比Length-width ratio 叶面积Leaf area (cm2)
2020 CK 67.26±0.38b 20.28±0.21b 3.32±0.06a 865.48±22.56b
T1 68.02±0.56ab 20.68±0.56b 3.29±0.08a 892.52±23.89b
T2 69.38±0.65a 21.96±0.48a 3.16±0.06b 966.71±18.56a
T3 66.25±0.21c 19.88±0.36b 3.33±0.09a 835.67±30.21b
2021 CK 66.66±0.52b 20.39±0.23b 3.27±0.09a 862.41±18.56b
T1 67.56±0.48b 21.23±0.42a 3.18±0.06ab 910.06±43.36ab
T2 69.75±0.73a 22.18±0.62a 3.14±0.05b 981.61±15.12a
T3 65.16±0.68c 20.02±0.38b 3.25±0.08a 827.71±35.11b

Table 2

Effects of different wide-narrow row treatments in double-row concave ridge on tissue structure of upper tobacco leaves"

年份
Year
处理
Treatment
海绵组织厚度
Sponge tissue thickness (μm)
栅栏组织厚度
Fence tissue thickness (μm)
海绵组织/栅栏组织
Sponge tissue/fence tissue
叶片厚度
Blade thickness (μm)
2020 CK 145.23±6.65a 124.18±2.56a 1.16±0.02b 302.78±5.68a
T1 148.56±5.15a 128.65±3.16a 1.19±0.05ab 306.25±6.78a
T2 140.21±4.21a 112.32±5.15b 1.26±0.03a 288.53±4.67b
T3 141.56±5.36a 118.35±2.08b 1.21±0.03ab 299.65±6.67a
2021 CK 152.68±5.51a 128.23±4.21a 1.18±0.02b 306.16±9.82a
T1 151.98±4.25a 122.63±4.16ab 1.23±0.04ab 300.78±7.16a
T2 147.92±4.63a 118.25±3.01b 1.25±0.03a 286.17±5.31b
T3 146.31±6.16a 119.33±3.54b 1.22±0.04ab 295.15±8.32ab

Table 3

Effects of different wide-narrow row treatments in double-row concave ridge on parameters related to aging characteristics of upper tobacco leaves (2021)"

处理
Treatment
POD活性
POD activity [U/(g?min)]
SOD活性
SOD activity (U/g)
CAT活性
CAT activity [U/(g?min)]
MDA含量
MDA content (mmol/g)
CK 285.35±6.23a 262.57±7.23a 255.37±7.13a 77.23±3.56b
T1 283.23±5.12a 259.14±6.41a 222.13±5.58b 78.86±2.54b
T2 260.16±6.13b 247.53±2.23b 215.36±4.36b 85.39±2.23a
T3 255.36±7.18b 241.12±4.23b 195.35±5.26c 88.23±2.63a

Table 4

Effects of different wide-narrow row treatments in double-row concave ridge on enzyme activities related to carbon and nitrogen metabolism of upper tobacco leaves (2021) U/g"

处理Treatment NR α淀粉酶Alpha amylase β淀粉酶Beta amylase 总淀粉酶Total amylase NI
CK 0.63±0.03a 2.55±0.02a 10.23±0.23b 12.16±0.33b 55.16±2.12b
T1 0.62±0.02a 2.52±0.03a 10.89±0.44b 13.26±0.52b 62.35±2.56a
T2 0.47±0.05b 2.57±0.03a 12.36±0.42a 15.03±0.43a 66.76±3.56a
T3 0.41±0.02b 2.53±0.04a 8.79±0.33c 12.15±0.56b 52.12±3.35b

Table 5

Effects of different wide-narrow row treatments in double-row concave ridge on chemical composition of upper tobacco leaves"

年份Year 处理Treatment 烟碱Nicotine (%) 还原糖Reducing sugar (%) 总糖Total sugar (%) 糖碱比Ratio of sugar to alkali
2020 CK 3.52±0.21a 27.12±0.36b 33.42±0.48a 8.45±0.38b
T1 3.43±0.18a 28.21±0.67ab 34.02±0.52a 8.52±0.52b
T2 2.98±0.11b 29.65±0.45a 34.12±0.68a 10.23±0.62a
T3 2.95±0.12b 26.58±0.42b 33.05±0.62a 8.56±0.48b
2021 CK 3.63±0.27a 27.52±0.26b 33.53±0.52a 7.88±0.55b
T1 3.54±0.22a 28.07±0.38b 34.26±0.66a 8.33±0.47b
T2 3.01±0.15b 30.26±0.54a 34.35±0.72a 10.45±0.58a
T3 3.04±0.12b 26.13±0.42c 32.42±0.42b 8.23±0.43b

Table 6

Effects of different wide-narrow row treatments in double-row concave ridge on sensory quality of upper tobacco leaves"

年份
Year
处理
Treatment
香气质
Aroma (18)
香气量
Aroma amount (16)
杂气
Miscellaneous (16)
刺激性
Irritating (20)
余味
Aftertaste (22)
燃烧性
Flammability (4)
灰色
Grey (4)
合计
Total (100)
2020 CK 16.0±0.5b 13.0±0.5b 13.5±0.5a 16.0±0.5b 16.5±0.5b 4.0±0.5a 4.0±0.0a 84.0±0.5b
T1 16.5±0.5ab 13.0±0.5b 13.5±0.5a 16.5±0.5b 17.0±0.5ab 4.0±0.5a 4.0±0.5a 84.5±0.5b
T2 17.0±0.5a 15.0±0.0a 14.0±0.5a 17.5±0.5a 17.5±0.5a 4.0±0.0a 4.0±0.0a 87.0±1.0a
T3 16.0±0.5b 13.0±0.5b 14.0±0.5a 17.0±0.5ab 16.5±0.5b 4.0±0.0a 4.0±0.5a 84.0±1.0b
2021 CK 16.0±0.5b 13.5±0.5a 13.5±0.5a 16.5±0.5a 16.5±0.5b 4.0±0.5a 4.0±0.0a 84.0±0.5c
T1 16.0±0.5b 13.5±0.5a 13.5±0.5a 16.5±0.5a 16.5±0.5b 4.0±0.5a 4.0±0.5a 85.0±0.0b
T2 17.0±0.0a 14.5±0.5a 14.0±0.5a 17.0±0.5a 18.0±0.5a 4.0±0.0a 4.0±0.5a 87.5±0.5a
T3 16.0±0.5b 13.5±0.5a 13.0±0.5b 17.0±0.5a 16.5±0.5b 4.0±0.0a 4.0±0.0a 84.0±1.0c

Table 7

Effects of different wide-narrow row treatments in double-row concave ridge on economic characters of flue-cured tobacco"

年份
Year
处理
Treatment
上等烟比例
Superior flue-cured tobacco rate (%)
产量
Yield (kg/hm2)
均价(元/kg)
Average price (yuan/kg)
产值(元/hm2
Output value (yuan/hm2)
2020 CK 35.73±0.86b 2576.23±33.11b 27.24±0.96b 70 176.51±3421.45b
T1 39.89±1.12a 2753.75±43.12a 29.02±0.83ab 79 913.83±2578.38ab
T2 42.54±1.56a 2802.21±23.67a 30.32±0.92a 84 963.01±1802.54a
T3 35.12±0.91b 2568.12±35.63b 27.53±0.85b 70 700.34±3316.24b
2021 CK 36.15±0.82b 2612.32±42.13b 27.63±0.48b 72 178.40±2715.38b
T1 39.11±0.53a 2676.36±35.63b 28.02±0.33b 74 991.61±2015.31b
T2 41.33±1.62a 2889.21±45.65a 29.85±0.43a 86 242.92±2459.23a
T3 35.23±0.72b 2613.45±38.63b 27.56±0.34b 72 026.68±1985.24b
[1] 韦克苏, 蒋石香, 颜杭, 等. 采收成熟度对提高上部烟叶可用性的影响——基于细支卷烟原料需求. 江苏农业科学, 2020, 48(23):204-209.
[2] 朱尊权. 提高上部烟叶可用性是促“卷烟上水平”的重要措施. 烟草科技, 2010(6):5-9,31.
[3] 李彦平, 阎小毛, 孟智勇, 等. 提高烤烟上部烟叶可用性研究进展. 安徽农业科学, 2020, 48(7):4-6.
[4] 徐雨, 周国荣, 李淮源, 等. 栽培措施对烤烟上部叶可用性影响的研究进展. 安徽农业科学, 2019, 47(13):8-11.
[5] 任志广, 陈征, 黄海棠, 等. 生态条件、栽培调制措施、烤烟工艺对烤烟上部叶可用性的影响. 中国农学通报, 2017, 33(6):73-78.
doi: 10.11924/j.issn.1000-6850.casb16040100
[6] 李子绅, 张常兴, 张锦中, 等. 不同起垄方式对植烟土壤物理特性及烤后烟叶产质量的影响. 中国农业科技导报, 2019, 21(12):151-158.
doi: 10.13304/j.nykjdb.2019.0313
[7] 张常兴, 马波波, 商悦名, 等. 不同垄作方式与覆膜厚度对烤烟根系生长发育的影响. 山东农业科学, 2017, 49(5):52-56.
[8] 陈乾锦, 池国胜, 李娇娇, 等. 机耕深度和起垄高度对烤烟生长、化学成分和经济效益的影响. 湖北农业科学, 2020, 59(增1):410-413.
[9] 王家民, 陈建军, 刘文涛, 等. 烟草双行凹垄栽培技术膜下水温效应研究. 现代农业科技, 2015(21): 30,32.
[10] 许卫猛, 阳波, 张定志, 等. 双行凹型垄栽培对山地烤烟产量品质的影响. 西南师范大学学报(自然科学版), 2014, 39(2):56-60.
[11] 王树林, 刘好宝, 邢小军, 等. 烟草轻简高效栽培技术研究——Ⅳ. M型宽垄双行种植模式对土壤理化性状的影响. 中国烟草科学, 2012, 33(5):42-48.
[12] 刘文涛, 王家民, 陈建军, 等. 双行凹垄栽培对烤烟农艺性状及产值的影响. 现代农业科技, 2015(21): 21,23.
[13] 魏光钰, 胡勇, 吴永琴, 等. 清镇烟区双行凹型垄不同垄高对烤烟生长和产质量的影响. 耕作与栽培, 2020, 40(5):40-41,44.
[14] 郭涛, 李海江, 腊贵晓, 等. 起垄方式和种植密度对浓香型有机烟叶产量和品质的影响. 河南农业科学, 2014, 43(9):41-45.
[15] 赵会纳, 雷波, 蔡凯, 等. 起垄方式对有机栽培烤烟生长和产质量的影响. 贵州农业科学, 2014, 42(8):79-82.
[16] 孙光伟, 陈振国, 王玉军, 等. 烤烟上部叶采收时SPAD值与鲜烟组织结构、生理指标及烤后烟叶内在质量的关系. 中国烟草学报, 2019, 25(5):63-69,104.
[17] 国家烟草专卖局. YC/T 159- 2002 烟草及烟草制品水溶性糖的测定连续流动法. 北京: 中国标准出版社, 2002.
[18] 国家烟草专卖局. YC/T 160- 2002 烟草及烟草制品总植物碱的测定连续流动法. 北京: 中国标准出版社, 2002.
[19] 莫泽君, 娄晓平, 孟军, 等. 烤烟上部叶叶面积相关性状的遗传及杂种优势分析. 南方农业学报, 2020, 51(6):1325-1331.
[20] 杨铁钊, 杨志晓, 柯油松, 等. 不同种植模式对烤烟根系和叶片衰老特性的影响. 应用生态学报, 2009, 20(12):2977-2982.
[21] 魏嵬, 汪健, 毕庆文, 等. 双行凹型垄及地膜覆盖对烟叶和土壤中磷含量的影响. 中国烟草科学, 2008, 29(3):43-47.
[22] 罗井清, 邓小华, 陈金, 等. 凹形双垄侧覆膜对耕层水热环境和上部烟叶生长及质量的影响. 土壤, 2019, 51(5):1013-1019.
[23] 管赛赛, 李志鹏, 于晓娜, 等. 行株距配置对烟田微生态环境、烤烟光合特性及产值的影响. 中国农学通报, 2017, 33(23):32-37.
doi: 10.11924/j.issn.1000-6850.casb16080074
[24] 周康, 李青山, 张富军, 等. 采收成熟度对烤烟上部叶不同分切区段质量的影响. 中国烟草科学, 2021, 42(2):62-70.
[25] 孙光伟, 陈振国, 赵环宇, 等. 采收次数对上部烟叶碳氮代谢及产质量的影响. 中国烟草科学, 2018, 39(6):58-65.
[26] 杨趁义, 孙光伟, 陈振国, 等. 不同时期环割对上部烟叶生长发育及质量的影响. 中国烟草科学, 2021, 42(2):22-27.
[27] 沈晗, 杨凯, 任伟, 等. 影响上部烟叶感官质量的主要化学成分分析. 中国烟草学报, 2019, 25(6):18-26.
[28] 张明发, 田峰, 邓小华, 等. 山区旱地高低垄宽窄行栽培对土壤化学性状及烟叶产质量影响. 中国农学通报, 2015, 31(36):119-124.
doi: 10.11924/j.issn.1000-6850.casb15060156
[1] Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Zhang Xiangyun, Zhang Jianhong. QTL Mapping for Fiber Quality Traits Using Gossypium barbadense Chromosome Segment Introgression Lines [J]. Crops, 2023, 39(5): 1-9.
[2] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[3] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[4] Liu Xiaomin, Xu Rui, Sun Jingguo, Zhao Fanchong, Si Zhenxing, Liang Zhizhe, Xu Zicheng, Han Dan. The Effects of Well Cellar Depth and Mulching Methods on the Gas- Thermal Environment and Flue-Cured Tobacco Growth and Yield [J]. Crops, 2023, 39(5): 157-163.
[5] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[6] Duan Junya, Zhao Yuanyuan, Peng Zhiliang, Zhang Yongfeng, Duan Weidong, Yang Qingxi, Wang Songling, Chen Xiaolong, Shi Hongzhi. Effects of Once-Over Harvesting Period on the Qualities of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi [J]. Crops, 2023, 39(5): 231-237.
[7] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[8] Ge Changbin, Qin Suyan, Qiao Jiliang, Wang Jun, Qi Shuangli, Lu Wenying, Zhang Zhenyong. Comparative Analysis of Agronomic Traits, Quality and Disease Evolution of Approved Wheat Varieties in Southern Henan and Southern Huai River in Jiangsu from 2001 to 2021 [J]. Crops, 2023, 39(5): 49-58.
[9] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[10] Chen Jian, Qi Wen, Jiang Hailing, Qian Zhongcang. Effects of Broccoli Waste Composting on Seedling Quality and Yield of Rice [J]. Crops, 2023, 39(4): 136-143.
[11] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[12] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[13] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[14] Zhang Hanwen, Liu Dan, Wang Xuerui, Li Wangshu, Lu Qiang, Wang Shufeng, Zhao Jianan, Wang Yubo, Zhang He, Li Caifeng. Effects of Superimposed Application of BR in Different Periods on Yield and Quality of Sugar Beet under Saline-Alkali Stress [J]. Crops, 2023, 39(4): 237-244.
[15] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!