Crops ›› 2023, Vol. 39 ›› Issue (6): 108-113.doi: 10.16035/j.issn.1001-7283.2023.06.015

Previous Articles     Next Articles

Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China

Wu Qi1(), Ming Bo2, Gao Shang2, Yang Hongye2, Zhang Chuan1, Chu Zhendong1, Li Shaokun1,2()   

  1. 1Heilongjiang Bayi Agricultural University, Daqing 163000, Heilongjiang, China
    2Institute of Crop Sciences,Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-03-22 Revised:2023-04-24 Online:2023-12-15 Published:2023-12-15

Abstract:

Constructing a model for dehydrating maize kernels is an important theoretical tool for investigating the dehydrating characteristics of various kernel variations and screening suitable mechanical grain harvesting types for cultivation areas. The cold Northeastern region is an important early-to-mid maturing cultivation of maize area, where rapid cooling and early frost in the fall, as well as low maturity and excessive moisture content of the kernels throughout the harvest season, are critical production concerns limiting maize industry development. During 2021-2022, a staged planting experiment was conducted in the cold Northeastern region on typical early-mid maturing maize varieties (Demeiya 1 and Demeiya 3) and the effects of shifting weather conditions on the drying process of maize kernels were simulated using various sowing treatments. The dehydrating model for the varieties was built using various modeling strategies, such as a full sowing dates and a portion sowing dates. The accuracy differences of the models were analyzed under various strategies, establishing a method for quickly building a dehydrating model for varieties. The results showed that the dehydration models built by various modeling techniques for Demeiya 1 and Demeiya 3 did not exhibit significant differences in model parameters or simulation precision, and the model parameter variability gradually decreased with the increase of the number of sowing dates. The models developed using different methods were assessed at three stations in the Northeastern spring corn region, and there was no apparent difference in the modeling accuracy. By employing phased sowing, a robust model for varieties could be constructed, with stable prediction accuracy between years and regions, accelerating the construction of maize variety dehydrating models, and provided a powerful theoretical tool for evaluating the suitability of mechanical grain harvesting for varieties.

Key words: Maize, Grain dehydration, Logistic Power model

Fig.1

Average daily temperature after spitting at test site in 2021-2022"

Table 1

"

品种
Variety
年份
Year
播期
Sowing
date
播种日期
Planting
date
吐丝期
Silking
date
成熟日期
Maturity
date
德美亚1号
Demeiya 1
2021 B1 05-06 07-16 08-17
B2 05-17 07-19 08-17
B3 05-27 07-24 09-13
2022 B1 05-07 07-15 08-24
B2 05-17 07-19 08-29
B3 05-27 07-24 09-14
德美亚3号
Demeiya 3
2021 B1 05-06 07-16 08-29
B2 05-17 07-19 08-29
B3 05-27 07-27 09-23
2022 B1 05-07 07-19 09-03
B2 05-17 07-23 09-14
B3 05-27 07-29 09-23

Fig.2

Relationship between grain moisture content and days after silking in two varieties"

Fig.3

Fitting curves for seed moisture contents of varieties and comparison of predicted values with measured values of model"

Table 2

Comparison of parameters for different modeling conditions for different varieties"

品种Variety 建模播期数量Sowing date number for modeling a b R2 RMSE
德美亚1号Demeiya 1 2 790.83±29.00a 1.68±0.04a 0.92a 4.50a
3 788.00±18.00a 1.70±0.03a 0.90a 4.30a
4 797.00±15.00a 1.71±0.02a 0.90a 4.26a
全部 783.41±14.00a 1.67±0.03a 0.83b 4.19a
德美亚3号Demeiya 3 2 922.54±26.00a 1.87±0.04b 0.92a 5.43a
3 922.08±18.00a 1.89±0.05b 0.90a 5.15a
4 926.37±11.00a 1.91±0.02b 0.90a 4.62a
全部 937.06±9.00a 2.00±0.04a 0.86b 4.83a

Fig.4

Comparison of parameters of variety modeling and sowing date modeling box plots"

Fig.5

Comparison of predicted and measured seed moisture contents in different regions of Demeiya 1"

[1] Xie R Z, Ming B, Gao S, et al. Current state and suggestions for mechanical harvesting of corn in China. Journal of Integrative Agriculture, 2022, 21(3):892-897.
doi: 10.1016/S2095-3119(21)63804-2
[2] 王克如, 李璐璐, 鲁镇胜, 等. 黄淮海夏玉米机械化粒收质量及其主要影响因素. 农业工程学报, 2021, 37(7):1-7.
[3] 柴宗文, 王克如, 郭银巧, 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
[4] 高尚, 明博, 李璐璐, 等. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44(12):1755-1763.
doi: 10.3724/SP.J.1006.2018.01755
[5] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50(11):2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
[6] 李璐璐, 明博, 高尚, 等. 不同熟期玉米品种籽粒田间脱水特征差异性分析. 作物学报, 2023, 49(6):1643-1652.
doi: 10.3724/SP.J.1006.2023.23043
[7] 黄兆福, 李璐璐, 侯梁宇, 等. 不同种植区玉米生理成熟后田间站秆脱水的积温需求. 中国农业科学, 2022, 55(4):680-691.
doi: 10.3864/j.issn.0578-1752.2022.04.005
[8] Schmidt J L, Arnel R H. Estimating harvest date of corn in the field. Crop Science, 1966, 6(3):227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[9] Maiorano A, Fanchini D, Donatelli M. MIMYCS. Moisture,a process-based model of moisture content in developing maize kernels. European Journal of Agronomy, 2014, 59:86-95.
doi: 10.1016/j.eja.2014.05.011
[10] Li L L, Ming B, Gao S, et al. A regional analysis model of maize kernel moisture. Agronomy Journal, 2021, 113(2):1467-1479.
doi: 10.1002/agj2.v113.2
[11] 陈绪昊, 高强, 陈新平, 等. 东北三省玉米生产资源投入和环境效应的时空特征. 中国农业科学, 2022, 55(16):3170-3184.
doi: 10.3864/j.issn.0578-1752.2022.16.009
[12] Chu Z D, Ming B, Li L L, et al. Dynamics of maize grain drying in the high latitude region of Northeast China. Journal of Integrative Agriculture, 2022, 21(2):365-374.
doi: 10.1016/S2095-3119(20)63434-7
[13] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
[14] 周颖, 张立国, 顾万荣, 等. 黑龙江省不同熟期玉米品种灌浆脱水及产量品质特性. 西北农业学报, 2017, 26(8):1173-1182.
[15] 李璐璐, 明博, 谢瑞芝, 等. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018, 51(10):1855-1867.
doi: 10.3864/j.issn.0578-1752.2018.10.005
[16] 高尚. 主要气象因素对玉米籽粒脱水的影响. 北京: 中国农业科学院, 2020.
[17] Zhang Y M, Xue J, Zhai J, et al. Does nitrogen application rate affect the moisture content of corn grains?. Journal of Integrative Agriculture, 2021, 20(10):2627-2638.
doi: 10.1016/S2095-3119(20)63401-3
[18] 王凤, 薛军, 王群, 等. 灌溉量对玉米生育后期脱水阶段子粒水分的影响. 玉米科学, 2020, 28(2):100-105.
[19] Zhang Z T, Ming B, Liang H W, et al. Evaluation of maize varieties for mechanical grain harvesting in mid-latitude region, China. Agronomy Journal, 2021, 113(2):1766-1775.
doi: 10.1002/agj2.v113.2
[20] 黄兆福, 明博, 王克如, 等. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019, 45(6):922-931.
doi: 10.3724/SP.J.1006.2019.83062
[21] 李红燕. 宁夏玉米籽粒脱水特性与机械粒收时期预测. 石河子: 石河子大学, 2019.
[1] Jin Yu, Guo Xinyu, Zhang Ying, Li Dazhuang, Wang Jinglu. Stomatal Phenotypic Identification and Research Progress in Maize Leaves [J]. Crops, 2023, 39(6): 1-10.
[2] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[3] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[4] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[5] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
[6] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[7] Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90.
[8] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[9] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[10] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[11] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[12] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
[13] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[14] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[15] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!