Crops ›› 2024, Vol. 40 ›› Issue (2): 234-241.doi: 10.16035/j.issn.1001-7283.2024.02.029

Previous Articles     Next Articles

Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress

He Jiamin1(), Zhang Yongqing1,2(), Zhang Meng1, Liang Ping1, Wang Dan1, Yan Fanfan1   

  1. 1College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
    2College of Geography, Shanxi Normal University, Taiyuan 030000, Shanxi, China
  • Received:2023-05-26 Revised:2023-08-01 Online:2024-04-15 Published:2024-04-15

Abstract:

In order to investigate the mitigative effects of seed soaking with uniconazole on the growth of quinoa seedlings under saline-alkali stress, Longli 1 was used as experimental material, the effects of seed soaking with uniconazole (0, 15, 30, 45 and 60 mg/L) at different concentrations on the agronomic characteristics and physiological parameters of quinoa at seedling stage (28 d after sowing) under different saline-alkali stress (CK 0 g/kg, mild saline-alkali 3 g/kg, moderate saline-alkali 5 g/kg, heavy saline-alkali 7 g/kg) were studied by pot experiment. The results showed that the osmotic substance contents, antioxidant enzyme activities and root activity of quinoa seedlings were increased under low salinity (3 g/kg), so as to cope with saline-alkali environment and alleviate oxidative damage. The root-shoot ratio and seedling strength index reached the maximum under moderate saline-alkali (5 g/kg) treatment. The agronomic parameters, photosynthetic parameters, osmotic substance contents, antioxidant enzyme activities and root activity of quinoa seedlings decreased significantly under high salinity, and malondialdehyde content reached the maximum under heavy saline-alkali (7 g/kg), the results indicated that the growth of quinoa seedlings was significantly affected by salinity. At the same saline-alkali level, the root-shoot ratio, seedling strength index, chlorophyll content, osmotic substance contents, antioxidant enzyme activities and root activity of quinoa seedlings were significantly increased after seed soaking with low concentration of uniconazole, the content of malondialdehyde decreased, and the effect was the most significant when the concentration of seed soaking was 15 mg/L.

Key words: Saline-alkali stress, Uniconazole, Quinoa, Seedling strength index, Physiological characteristics

Table 1

Effects of seed soaking with uniconazole on the growth parameters of quinoa seedlings under saline-alkali stress"

盐碱处理
Saline-alkali treatment (g/kg)
烯效唑处理
Uniconazole treatment (mg/L)
株高
Plant height (cm)
茎粗
Stem diameter (mm)
主根长
Main root length (cm)
生物量(g/株)
Biomass (g/plant)
0 0 20.13±0.16Aa 1.56±0.03Ca 17.05±0.21Dc 2.76±0.03Ba
15 17.65±0.12Ba 1.96±0.04Aa 26.37±0.17Ac 2.96±0.02Aa
30 16.12±0.09Ca 1.73±0.03Ba 24.23±0.23Bc 2.74±0.04Ba
45 14.94±0.10Da 1.63±0.03Ba 20.51±0.20Cc 2.59±0.03Ca
60 13.12±0.08Ea 1.43±0.02Da 15.11±0.17Ec 2.51±0.01Ca
3 0 15.83±0.09Ab 1.41±0.02Db 21.47±0.28Da 2.52±0.02Bb
15 14.54±0.08Bb 1.78±0.05Ab 31.51±0.31Aa 2.76±0.03Ab
30 13.27±0.12Cb 1.65±0.03Bb 28.61±0.26Ba 2.51±0.02Bb
45 12.13±0.07Db 1.51±0.04Cb 23.85±0.24Ca 2.35±0.04Cb
60 11.03±0.05Eb 1.32±0.04Eb 17.15±0.15Ea 2.12±0.01Db
5 0 12.87±0.11Ac 1.29±0.06Cc 19.41±0.16Cb 2.17±0.02Bc
15 11.41±0.09Bc 1.51±0.02Ac 28.32±0.13Ab 2.36±0.03Ac
30 10.02±0.05Cc 1.38±0.05Bc 26.13±0.17Bb 2.20±0.02Bc
45 9.26±0.08Dc 1.36±0.02Bc 20.93±0.16Cb 2.07±0.02Cc
60 9.27±0.04Dc 1.14±0.02Dc 16.45±0.15Db 1.83±0.01Dc
7 0 9.87±0.08Ad 1.12±0.03Cd 10.26±0.14Dd 1.72±0.03Bd
15 8.65±0.09Bd 1.38±0.02Ad 16.85±0.21Ad 1.88±0.03Ad
30 7.42±0.12Cd 1.24±0.04Bd 14.46±0.12Bd 1.73±0.01Bd
45 7.31±0.06Cd 1.13±0.06Cd 12.12±0.11Cd 1.69±0.02Bd
60 6.17±0.04Dd 1.01±0.02Dd 8.01±0.12Ed 1.58±0.01Cd

Fig.1

Effects of seed soaking with uniconazole on root-shoot ratio and seedling strength index in quinoa seedlings under saline-alkali stress Different capital letters indicate significant differences among different seed soaking concentrations under the same saline-alkali condition (P < 0.05), and different lowercase letters indicate significant differences among different saline-alkali conditions under the same seed soaking concentration (P < 0.05), the same below."

Fig.2

Effects of seed soaking with uniconazole on the contents of chlorophyll and physiological index in quinoa seedlings under saline-alkali stress"

Fig.3

Effects of seed soaking with uniconazole on POD and SOD activities in quinoa seedlings under saline-alkali stress"

Fig.4

Effects of seed soaking with uniconazole on the contents of MDA in quinoa seedlings under saline-alkali stress"

Fig.5

Effects of seed soaking with uniconazole on root activity in quinoa seedlings under saline-alkali stress"

[1] 杨永利. 盐生植物对盐碱地的改良作用及在绿化中的景观效果. 现代园林, 2004(10):34-38.
[2] 高淑梅, 周继伟. 松嫩平原盐碱土现状及改良措施. 现代化农业, 2011, 383(6):13-15.
[3] 杨瑞珍, 毕于运. 我国盐碱化耕地的防治. 干旱区资源与环境, 1996(3):22-30.
[4] 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制. 分子植物育种, 2020, 18(10):3441-3448.
[5] 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16):5565-5577.
[6] 李丽丽, 姜奇彦, 牛风娟, 等. 藜麦耐盐机制研究进展. 中国农业科技导报, 2016, 18(2):31-40.
doi: 10.13304/j.nykjdb.2015.437
[7] 徐月乔. 盐碱胁迫下灰绿型与黄绿型羊草根际效应和光合生理响应. 长春: 东北师范大学, 2019.
[8] Juan A, Gonzalez M, Gallardo M, et al. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses:dry matter partitioning. Botanical Studies, 2009, 50(1):35-42.
[9] Jacobsen S E, Monteros C, Corcuera L J, et al. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 2007, 26(4):471-475.
doi: 10.1016/j.eja.2007.01.006
[10] Jensen C R, Jacobsen S E, Andersen M N, et al. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy, 2000, 13(1):11-25.
doi: 10.1016/S1161-0301(00)00055-1
[11] 赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响. 草业学报, 2019, 28(2):156-167.
doi: 10.11686/cyxb2018181
[12] 贺笑, 庞春花, 张永清, 等. 多效唑和矮壮素浸种对藜麦幼苗生长的影响. 河南农业科学, 2018, 47(1):26-31.
[13] 李琬, 项洪涛, 何宁, 等. 烯效唑(S3307)提高作物抗逆性研究进展. 中国农学通报, 2020, 36(20):101-106.
doi: 10.11924/j.issn.1000-6850.casb20190500106
[14] 刘子记, 牛玉, 曹振木, 等. 多效唑对辣椒幼苗的矮化效应. 北方园艺, 2013(7):13-16.
[15] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. Journal of Plant Growth Regulation, 1999, 18(1):9-14.
pmid: 10467014
[16] Izumi K, Kamiya Y, Sakurai A, et al. Studies of sites of action of a new plant growth retardant(E)-1-(4-chlorophenyl)-4,4-dimethyl- 2-(1,2,4-triazol-1-yl)-1-penten-3-ol(S-3307) and comparative effects of its stereoisomers in a cell-free system from Cucurbita maxima. Plant and Cell Physiology, 1985, 26(5):821-827.
[17] 刘星贝. 烯效唑和赤霉素浸种对甜荞抗倒伏性能的影响及其机理研究. 重庆: 西南大学, 2017.
[18] 王玉洁. 烯效唑(S3307)对盐胁迫下黄瓜幼苗生理生化特性的影响. 兰州: 甘肃农业大学, 2007.
[19] 金喜军, 张盼盼, 屈春媛, 等. 烯效唑浸种对盐胁迫下糜子萌发和幼苗质量的调控效应. 干旱地区农业研究, 2015, 33(6):149-154.
[20] 傅福道, 金关荣, 李金先, 等. 亚麻喷施烯效唑的抗倒及增产效果. 中国麻业科学, 2003, 25(3):117-119.
[21] 杨崇庆, 曹秀霞, 张炜, 等. 叶面喷施烯效唑对旱地胡麻抗倒性和产量性状的影响. 干旱地区农业研究, 2017, 35(3):49-52.
[22] 张倩, 张海燕, 谭伟明, 等. 30%矮壮素-烯效唑微乳剂对水稻抗倒伏性状及产量的影响. 农药学学报, 2011, 13(2):144-148.
[23] 孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响. 西北植物学报, 2017, 37(10):1988-1995.
[24] 李宁毅, 王吉振, 时彦平. 烯效唑(S3307)对矮牵牛幼苗耐盐性的调节效应. 沈阳农业大学学报, 2011, 42(6):668-671.
[25] 李煜昶, 岳铭秀, 董景华. 烯效唑对大豆的增产作用. 天津农业科学, 1998, 4(2):15-17.
[26] 关华, 杨文钰. 烯效唑对小麦苗期生长的调控效应. 种子, 2002(3):62-63.
[27] 谷增辉. 烯效唑对小麦的生理生态效应. 农业科技通讯, 2018 (10):185-187.
[28] 李小方, 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2016.
[29] 修妤, 梁晓艳, 石瑞常, 等. 混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响. 江苏农业科学, 2020, 48(4):89-94.
[30] 谢发顺, 罗家传, 张春初, 等. 小麦应用烯效唑拌种初探. 安徽农业科学, 2001, 29(3):306-307.
[31] 关华. 烯效唑对小麦种子萌发生理和壮苗的调控研究. 雅安: 四川农业大学, 2002.
[32] 李秋, 李立芹. 烯效唑对小麦幼苗生长的影响. 安徽农业科学, 2011, 39(10):5715-5716.
[33] Duan L, Guan C, Li J, et al. Compensative effects of chemical regulation with uniconazole on physiological damages caused by water deficiency during the grain filling stage of wheat. Journal of Agronomy & Crop Science, 2008, 194(1):9-14.
[34] He J, Lin L J, Ma Q Q, et al. Uniconazole (S-3307) strengthgthens the growth and cadmium accumulation of accumulator plant Malachium aquaticum. International Journal of Phytoremediation, 2017, 19(4):348-352.
doi: 10.1080/15226514.2016.1225287
[35] 刘丽琴, 张永清, 李鑫, 等. 烯效唑浸种对红小豆种子萌发及幼苗生长的影响. 江苏农业科学, 2017, 45(3):64-70.
[36] 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响. 干旱区资源与环境, 2022, 36(5):146-152.
[37] 张景云, 吴凤芝. 盐胁迫对黄瓜不同耐盐品种叶绿素含量和叶绿体超微结构的影响. 中国蔬菜, 2009(10):13-16.
[38] 周静. 藜麦对NaHCO3胁迫适应性机制研究. 长春: 东北师范大学, 2017.
[39] Ilektra S, Michael M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 2012, 169(6):577-585.
doi: 10.1016/j.jplph.2011.12.015
[40] 姚远, 徐月乔, 王贵, 等. 盐碱胁迫下松嫩草地2种生态型羊草根际效应及光合生理响应. 中国农业科学, 2020, 53(13):2584-2594.
doi: 10.3864/j.issn.0578-1752.2020.13.007
[41] 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响. 干旱区资源与环境, 2022, 36(10):185-192.
[42] 刘铎, 丛日春, 党宏忠, 等. 柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性. 生态环境学报, 2014, 23(9):1531-1535.
[43] 张敏, 王校常, 严蔚东, 等. 盐胁迫下转Bt基因棉的K+、Na+转运及SOD活性的变化. 土壤学报, 2005, 42(3):460-467.
[44] Shabala L, Mackay A, Tian Y, et al. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 2012, 146(1):26-38.
doi: 10.1111/ppl.2012.146.issue-1
[45] 许浩宇, 赵颖, 阮倩, 等. 不同混合盐碱下藜麦幼苗的抗性研究. 草业学报, 2023, 32(1):122-130.
doi: 10.11686/cyxb2021500
[46] 庞春花, 张紫薇, 张永清. 水磷耦合对藜麦根系生长、生物量积累及产量的影响. 中国农业科学, 2017, 50(21):4107-4117.
doi: 10.3864/j.issn.0578-1752.2017.21.005
[47] 严青青, 张巨松, 徐海江, 等. 盐碱胁迫对海岛棉幼苗生物量分配和根系形态的影响. 生态学报, 2019, 39(20):7632-7640.
[1] Liu Jia, Wu Tianyi, Zhu Jiayu, Deng Shaozhu, Zhang Yuxian, Liang Xilong, Jin Xijun. Effects of Uniconazole Combined with Melatonin on Germination and Root Morphology of Adzuki Bean [J]. Crops, 2024, 40(1): 180-186.
[2] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[3] Xiu Junjie, Liu Xueliang. Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage [J]. Crops, 2023, 39(6): 174-180.
[4] Yang Enze, Wang Shuyan, Liu Ruixiang, Shi Fengyuan, Zhang Jinhao, Li Jiana, Li Zhiwei, Guo Zhanbin. Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP [J]. Crops, 2023, 39(6): 79-85.
[5] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[6] Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42.
[7] Niu Hanhui, Wei Xiaokai, Yu Shikang, Gu Huizhan, He Jixian, Zhang Qili, Li Junju, Jing Yanqiu, Lei Qiang. Effects of Exogenous Salicylic Acid on Physiological Characteristics of Flue-Cured Tobacco Seedlings under Low Temperature Stress [J]. Crops, 2023, 39(2): 151-156.
[8] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[9] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[10] Zhang Panpan, Wu Xiong, Ji Jiangtao, Wang Xiaolin. Effects of EDTA on Growth and Physiological Characteristics of Cucumber Seedlings under Chromium Stress [J]. Crops, 2023, 39(1): 196-200.
[11] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[12] Hou Xue, Chen Yujie, Li Chunmiao, Fang Shumei, Liang Xilong, Zheng Dianfeng. Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress [J]. Crops, 2022, 38(6): 174-180.
[13] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[14] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[15] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!