Crops ›› 2024, Vol. 40 ›› Issue (3): 54-63.doi: 10.16035/j.issn.1001-7283.2024.03.008

Previous Articles     Next Articles

Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks

Ma Hongzhen(), Xu Haitao(), Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua   

  1. Zhumadian Academy of Agricultural Sciences / Zhumadian Comprehensive Experimental Station of Henan Maize Industrial Technology System, Zhumadian 463000, Henan, China
  • Received:2023-08-28 Revised:2023-11-14 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to accurately identify the genetic basis of maize inbred line germplasm resources and explore the distance of genetic relationships between germplasm resources, 42 maize backbone inbred lines were used as experimental materials, and genetic diversity and genetic distance of maize inbred line germplasm resources were studied through genetic variation, principal component analysis, and genetic distance clustering analysis based on eight husk phenotypic traits. The results showed that the variation range of husk phenotypic traits of 42 maize inbred line germplasm resources was 3.23%-26.15%, and the average coefficient of variation was 17.03%. The variation of husk dry weight and the longest husk width were abundant, but the variation of husk tightness was the least. The genetic diversity index (H') ranged from 1.53 to 1.99, the genetic diversity index for husk dry weight was the highest, while the husk layer was the lowest. Correlation analysis showed that there were complex correlations among the husk phenotypic traits of inbred lines. There was a positive correlation between husk dry weight and husk layer, husk length, husk width, and husk thickness, while husk layer was significantly negatively correlated with husk length and width. The differences in particular factor qualities of 42 maize backbone inbred lines were examined, and the first three principal component scores served as markers for the two-dimensional sorting of principal components. The principal component analysis results showed that the cumulative contribution rate of the first three principal components reached 74.21%. Euclidean distance clustering analysis showed that 42 maize inbred lines were divided into five groups, and the average genetic distance between groups was 10.64.

Key words: Maize, Inbred line, Germplasm resources, Husk phenotypic traits, Genetic diversity, Genetic distance

Fig.1

Average temperature, sunshine hours and precipitation during the growth period of maize inbred lines from 2021 to 2022"

Table 1

Inbred lines materials and heterotic groups"

自交系
Inbred
line
类群
Heterotic
group
自交系
Inbred
line
类群
Heterotic
group
自交系
Inbred
line
类群
Heterotic
group
昌7-2
Chang 7-2
塘四平头
7922
瑞德
21H86
兰卡斯特
Mo17
兰卡斯特
丹340
Dan 340
旅大红骨
12H21
兰卡斯特
PH4CV 兰卡斯特 S122 旅大红骨 13H72 P群
自330
Zi 330
兰卡斯特
郑35
Zheng 35
旅大红骨
H1613
P群
漯12
Luo 12
兰卡斯特
8340
旅大红骨
ZM027
瑞德
齐319
Qi 319
P群
郑22
Zheng 22
旅大红骨
H8810 瑞德
齐318
Qi 318
P群
选03
Xuan 03
旅大红骨
19H136
瑞德
P138
P群
53
旅大红骨
驻85
Zhu 85
瑞德
丹599
Dan 599
P群
黄早四
Huangzaosi
塘四平头
驻136
Zhu 136
瑞德
78599-3
P群
浚92-8
Xun 92-8
塘四平头
H732
旅大红骨
郑58
Zheng 58
瑞德
K12
塘四平头
14H95
旅大红骨
黄C
Huang C
瑞德
浚9058
Xun 9058
外引选
06T9
旅大红骨
M54 瑞德 PH6WC 外引选 ZM7211 塘四平头
郑32
Zheng 32
瑞德
ZM3358
兰卡斯特
H0326
塘四平头

Table 2

Genetic variation coefficients of husk phenotypic traits of maize inbred lines"

性状
Trait
最大值
Maximum
最小值
Minimum
极差
Range
平均值
Average
标准差
Standard deviation
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
苞叶层数Husk layer 12.0 7.0 5.0d 8.9 1.4068 15.81 0.431 -0.530
最长苞叶长
Longest husk length (cm)
29.5
15.4
14.1b
23.1
2.9121
12.61
-0.121
0.208
最长苞叶宽
Longest husk width (cm)
17.2
4.0
13.2b
9.5
2.3080
24.29
0.726
2.027
第3片苞叶长
3rd husk length (cm)
27.5
14.8
12.7b
22.0
2.7164
12.35
-0.243
0.288
第3片苞叶宽
3rd husk width (cm)
15.5
5.1
10.4c
9.6
1.7771
18.51
0.644
2.345
苞叶厚度Husk thickness (mm) 4.21 1.55 2.66e 2.41 0.5606 23.26 1.071 1.595
苞叶干重Husk dry weight (g) 22.50 5.95 16.55a 13.08 3.4208 26.15 0.374 0.500
苞叶松紧度Husk tightness 0.936 0.816 0.120f 0.891 0.0288 3.23 -1.033 0.763

Table 3

Genetic diversity analysis of eight husk phenotypic traits of maize inbred lines"

性状
Trait
Pi H′
1 2 3 4 5 6 7 8 9 10
苞叶层数Husk layer 0.00 0.00 0.32 0.35 0.00 0.33 0.33 0.19 0.00 0.01 1.53
最长苞叶长Longest husk length 0.09 0.09 0.25 0.25 0.32 0.33 0.30 0.14 0.19 0.01 1.97
最长苞叶宽Longest husk width 0.09 0.00 0.22 0.33 0.32 0.32 0.28 0.19 0.14 0.01 1.90
第3片苞叶长3rd husk length 0.14 0.00 0.22 0.30 0.28 0.36 0.25 0.14 0.19 0.01 1.90
第3片苞叶宽3rd husk width 0.09 0.00 0.19 0.35 0.28 0.35 0.22 0.19 0.14 0.01 1.83
苞叶厚度Husk thickness 0.00 0.09 0.22 0.34 0.32 0.30 0.28 0.14 0.14 0.01 1.84
苞叶干重Husk dry weight 0.09 0.14 0.19 0.32 0.33 0.28 0.30 0.19 0.14 0.01 1.99
苞叶松紧度Husk tightness 0.19 0.09 0.09 0.32 0.09 0.37 0.33 0.09 0.14 0.00 1.71
均值Mean 1.83

Fig.2

The relationship between the CV of husk phenotypic traits and H′ of maize inbred lines"

Table 4

The correlation analysis of husk phenotypic traits of maize inbred lines"

性状
Trait
苞叶层数
Husk
layer
最长苞叶长
Longest husk
length
最长苞叶宽
Longest
husk width
第3片苞叶长
3rd husk
length
第3片
苞叶宽
3rd husk width
苞叶厚度
Husk
thickness
苞叶干重
Husk dry
weight
苞叶松紧度
Husk
tightness
苞叶层数Husk layer 1.000
最长苞叶长Longest husk length -0.245 1.000
最长苞叶宽Longest husk width -0.406** 0.497** 1.000
第3片苞叶长3rd husk length -0.246 0.975** 0.499** 1.000
第3片苞叶宽3rd husk width -0.412** 0.455** 0.890** 0.439* 1.000
苞叶厚度Husk thickness 0.173 -0.258 -0.280 -0.270 -0.349* 1.000
苞叶干重Husk dry weight 0.353* 0.206 0.058 0.255 0.047 0.140 1.000
苞叶松紧度Husk tightness 0.137 -0.159 -0.057 -0.149 -0.001 0.075 0.242 1.000

Table 5

Principal components analysis for husk phenotypic traits of maize inbred lines"

性状Trait PC1 PC2 PC3
苞叶层数Husk layer -0.2828 0.4648 -0.1054
最长苞叶长Longest husk length 0.4596 0.2490 -0.3378
最长苞叶宽Longest husk width 0.4645 -0.0530 0.3222
第3片苞叶长3rd husk length 0.4590 0.2728 -0.3329
第3片苞叶宽3rd husk width 0.4540 -0.0763 0.3973
苞叶厚度Husk thickness -0.2555 0.1971 -0.0442
苞叶干重Husk dry weight 0.0446 0.7064 0.0801
苞叶松紧度Husk tightness -0.0949 0.3179 0.7028
特征值Eigenvalue 3.2729 1.5418 1.1226
贡献率Contribution rate (%) 40.91 19.27 14.03
累计贡献率
Cumulative contribution rate (%)
40.91 60.18 74.21

Fig.3

The scatterplot based on principal components of maize inbred lines PC1, PC2 and PC3 represent the score values of the first, second and third principal components, respectively."

Fig.4

Cluster diagram of 42 maize inbred lines"

Table 6

Average values of various characteristics in different groups of maize inbred lines"

性状
Trait
类群Group
苞叶层数Husk layer 10.7 8.4 8.5 7.6 10.5
最长苞叶长
Longest husk length (cm)
21.1 23.9 24.0 23.6 21.2
最长苞叶宽
Longest husk width (cm)
8.0 11.0 8.9 11.4 7.8
第3片苞叶长
3rd husk length (cm)
20.0 22.4 22.9 22.5 20.5
第3片苞叶宽
3rd husk width (cm)
8.4 10.5 9.0 11.3 8.9
苞叶厚度
Husk thickness (mm)
2.65 2.13 2.45 2.53 2.17
苞叶干重Husk dry weight (g) 17.12 9.08 12.81 14.04 13.14
苞叶松紧度Husk tightness 0.907 0.881 0.893 0.889 0.879

Table 7

Group composition and average genetic distance between groups"

类群
Group
自交系
Inbred line
平均遗传距离Average genetic distance
S122、郑35、自330、郑22、PH6WC、H732、21H86、
驻85、P138、丹599
0.00
H0326、K12、昌7-2、黄早四、Mo17、PH4CV 5.47 0.00
8340、19H136、选03、7922、H1613、黄C、ZM7211、
ZM027、驻136、郑32、漯12
15.76* 15.83* 0.00
浚9058、齐319 6.41 13.42* 17.57* 0.00
浚92-8、齐318 12.17* 7.19 19.30* 25.27* 0.00
ZM3358、12H21、H8810、14H95 9.07 16.12* 15.09* 10.59 5.26 0.00
53、丹340、78599-3 9.80 19.59* 5.92 17.94* 10.45 15.67* 0.00
郑58、06T9 12.88* 21.74* 17.21* 12.27* 10.51 6.83 6.09 0.00
13H72 12.98* 13.89* 8.71 12.93* 15.61* 12.08* 11.07* 7.87 0.00
M54 10.32 10.38 15.05* 14.98* 16.00* 15.84* 18.02* 21.71* 22.77* 0.00
[1] 刘东军, 张宏纪, 张举梅, 等. 291份俄罗斯玉米自交系的遗传多样性分析. 核农学报, 2016, 30(11):2112-2118.
doi: 10.11869/j.issn.100-8551.2016.11.2112
[2] 杨密, 王美娟, 许海涛. 不同生态区玉米自交系苞叶动态发育差异性研究. 作物杂志, 2023(5):81-90.
[3] 苏丽娜. 玉米苞叶表型可塑性的GWAS分析. 沈阳: 沈阳农业大学, 2019.
[4] 马智艳, 董永彬, 乔大河, 等. 不同种质玉米杂交种苞叶性状特征分析. 河南农业科学, 2015, 44(2):15-18.
[5] Cross H Z, Chyle J R, Hammond J J. Divergent selection for ear moisture in early maize. Crop Science, 1987, 27(5):914-918.
[6] 孟剑霞. 玉米雌穗与苞叶发育研究进展. 安徽农学通报, 2007, 13(14):78-79.
[7] Cross H Z. A selection procedure for ear drying-rates in early maize. Euphytica, 1985, 34(2):409-418.
[8] 张林, 张宝石, 王霞, 等. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009, 40(10):9-12.
[9] Cross H Z, Kabir K M. Evaluation of field dry-down rates in early maize. Crop Science, 1989, 29(1):54-58.
[10] Demissie G, Tefera T, Tadesse A. Efficacy of silicosec, filter cake and wood ash against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on three maize genotypes. Journal of Stored Products Research, 2008, 44(3):227-231.
[11] Afolabi C G, Ojiambo P S, Ekpo E J A, et al. Evaluation of maize inbred lines for resistance to Fusarium ear rot and Fumonisin accumulation in grain in tropical Africa. Plant Disease, 2007, 91 (3):279-286.
doi: 10.1094/PDIS-91-3-0279 pmid: 30780561
[12] Cantrell R G, Geadelmann J L. Contribution of husk leaves to maize grain yield. Crop Science, 1981, 21(3):544-546.
[13] 胡昌浩, 潘子龙. 夏玉米同化产物积累与养分吸收分配规律的研究:Ⅱ. 氮、磷、钾的吸收、分配与转移规律. 中国农业科学, 1982, 15(2):38-48.
[14] 陈坚剑, 张慧, 王婷甄, 等. 甜玉米自交系遗传多样性和群体结构分析. 分子植物育种, 2022, 20(19):6559-6565.
[15] 高永钢, 高军, 贾晋, 等. 内蒙古地区主要推广玉米品种遗传多样性研究. 宁夏大学学报(自然科学版), 2014, 35(1): 78-81.
[16] 郭江岸, 冯勇, 赵瑞霞, 等. 玉米骨干自交系遗传多样性分析及茎腐病抗性鉴定. 北方农业学报, 2021, 49(4):30-34.
doi: 10.12190/j.issn.2096-1197.2021.04.05
[17] 刘东军, 张宏纪, 张举梅, 等. 291份俄罗斯玉米自交系的遗传多样性分析. 核农学报, 2016, 30(11):2112-2118.
doi: 10.11869/j.issn.100-8551.2016.11.2112
[18] 夏浩然, 徐涛, 贺伟, 等. 玉米自交系苞叶表型可塑性差异分析. 华中农业大学学报, 2021, 40(5):23-30.
[19] 仇律雯, 杨扬, 范亚明, 等. 国家东南区鲜食糯玉米品质及农艺性状与 SSR标记遗传多样性分析. 江苏农业科学, 2022, 50(18):130-135.
[20] 张海波. 玉米收获期苞叶松紧度的GWAS分析及与果穗含水量的关系. 沈阳: 沈阳农业大学, 2018.
[21] 张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3):15-21.
[22] 张振良, 黄小兰, 薛林, 等. 基于主成分分析和聚类分析的甜糯玉米新组合育种潜力评价. 江西农业学报, 2019, 31(2):19-25.
[23] 董永军. 玉米自交系表型性状调查与遗传多样性分析. 太原: 山西大学, 2018.
[24] 谷静丛. 110份玉米自交系遗传多样性分析. 天津: 天津农学院, 2015.
[25] 张亚菲, 刘松涛, 曹雯梅, 等. 黄淮海夏玉米品种主要性状遗传多样性研究. 种子, 2021, 40(4):96-100.
[26] 潘天遵, 高聚林, 苏治军, 等. 基于主成分分析的玉米杂交组合农艺性状综合评价. 北方农业学报, 2016, 44(4):1-8,13.
[27] 高嵩, 刘宏伟, 何欢, 等. 利用SNP芯片进行玉米遗传多样性和群体遗传结构分析及新品种选育. 玉米科学, 2021, 29 (1):39-45.
[28] 印志同, 薛林, 邓德祥, 等. 玉米自交系性状的聚类分析. 西南农业学报, 2004, 17(5):563-566.
[29] 朱汉勇, 钟正阳, 李玉祥, 等. 滇东南102个玉米自交系的性状相关与聚类分析. 西南师范大学学报(自然科学版), 2012, 37(4):96-101.
[30] 卫文星, 张红, 路风银, 等. 芝麻品种主成分分析和遗传距离测定及其在杂交育种中的应用. 华北农学报, 1994, 9(3):29-33.
doi: 10.3321/j.issn:1000-7091.1994.03.007
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[3] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[4] Dai Han, Shen Tie, Shi Taoxiong, Li Ruiyuan. Genomic SSR Loci Mining and Genetic Diversity Analysis of Camellia oleifera Based on Genome Sequences [J]. Crops, 2024, 40(3): 23-31.
[5] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[6] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[7] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[8] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[9] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[10] Zhang Qian, Ren Wen, Zhao Bingbing, Zhou Miaoyi, Li Hanshuai, Liu Ya, Du Hewei. Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize [J]. Crops, 2024, 40(2): 30-39.
[11] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[12] Feng Yong, Hou Xuguang, Xue Chunlei, Zhang Laihou, Song Guodong, Su Minli, Fu Xiaohua, Sun Yuyan. Division of Suitable Ecological Regions of Maize Varieties in Inner Mongolia [J]. Crops, 2024, 40(1): 23-30.
[13] Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238.
[14] Ma Juan, Huang Lu, Yu Ting, Guo Guojun, Zhu Weihong, Liu Jingbao. Multi-Locus Genome-Wide Association Study and Genomic Prediction for General Combining Ability of Maize Ear Diameter [J]. Crops, 2024, 40(1): 31-39.
[15] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!