Crops ›› 2024, Vol. 40 ›› Issue (4): 269-276.doi: 10.16035/j.issn.1001-7283.2024.04.035

Previous Articles    

Effects of Different Sowing and Fertilization Methods on Contents of Mineral Elements, Chlorophyll and Active Enzymes of Highland Barley

Jiang Di1,2,3(), Xie Huichun1,2,3(), Jin Xionglian1,2,3, Mao Xiaoning1,2,3, Du Shaobo1,2,3   

  1. 1School of Life Sciences, Qinghai Normal University, Xining 810008, Qinghai, China
    2Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization on the Qinghai Tibet Plateau, Xining 810008, Qinghai, China
    3Key Laboratory of Medicinal Animal and Plant Resources on the Qinghai Tibet Plateau, Xining 810008, Qinghai, China
  • Received:2023-06-30 Revised:2023-09-15 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to explore the highland barley varieties suitable for planting in Huangzhong county, Qinghai province and the optimal methods of sowing and fertilization, five highland barley varieties (Beiqing 8, Beiqing 9, Kunlun 14, Kunlun 17 and Dulihuang) were selected for variety comparison test. According to the differences of seedling yield, chlorophyll, mineral elements and active enzyme contents, excellent highland barley varieties were selected, and different sowing (row spacing and sowing amount) and fertilization (type and fertilization amount) methods were set for Beiqing 9, the effects of different sowing and fertilization methods on the contents of mineral elements, chlorophyll, superoxide dismutase (SOD) and cytochrome oxidase were studied. The results showed that the contents of mineral elements in Kunlun 17 and Beiqing 9 were higher, among which the seedling yield of Kunlun 17 was the highest, and the contents of chlorophyll and cytochrome oxidase of Beiqing 9 were the highest. The contents of mineral elements, SOD and cytochrome oxidase in Beiqing 9 increased significantly with increasing of seeding amount and row spacing, the contents of chlorophyll and SOD increased significantly with the increasing of N+P and N fertilizers, and the contents of cytochrome oxidase increased significantly with the increasing of P fertilizer; The correlation between most mineral elements in highland barley reached a very significant level.

Key words: Highland barley, Mineral element, Chlorophyll, Superoxide dismutase, Cytochrome oxidase

Table 1

Regression equation and correlation coefficients of different elements"

元素
Element
回归方程
Regression equation
相关系数
Correlation coefficient
Ca A=138 101.3248c+34.7131 0.99 999
Fe A=2674.9570c-7.8182 0.99 968
Mg A=66 960.5575c+1.0606 0.99 991
Al A=14 801.3963c-2.5101 0.99 930
Na A=19 598.0383c-17.7411 0.99 904
Zn A=5787.7268c-22.0526 0.99 977
Cu A=45 789.9780c-2.7701 0.99 989
Mn A=18 502.8647c-0.3745 0.99 985

Table 2

Contents of eight mineral elements in different highland barley varieties mg/g"

品种Variety Ca Fe Mg Al Na Zn Cu Mn
北青8号Beiqing 8 0.715 0.461 1.243 0.044 0.325 0.071 0.008 0.052
北青9号Beiqing 9 1.359 0.873 1.774 0.081 0.413 0.102 0.013 0.058
昆仑14号Kunlun 14 0.862 0.475 1.346 0.040 0.589 0.071 0.004 0.036
昆仑17号Kunlun 17 1.074 0.749 1.074 0.136 0.802 0.091 0.009 0.054
肚里黄Dulihuang 1.140 0.901 1.457 0.066 0.035 0.089 0.006 0.056

Fig.1

Seedling yield and contents of chlorophyll, SOD and cytochrome oxidase of different highland barley varieties Different lowercase letters show extremely significant difference at 0.01 level, the same below."

Table 3

Average contents of eight mineral elements in Beiqing 9 under different treatments mg/g"

处理Treatment Ca Fe Mg Al Na Zn Cu Mn
H1B1 0.752 0.127 1.143 0.0476 0.452 0.149 0.083 0.072
H1B2 0.761 0.115 1.451 0.0129 0.660 0.104 0.012 0.061
H1B3 0.709 0.339 1.376 0.0651 0.516 0.049 0.020 0.029
H1B4 0.730 0.099 1.193 0.0162 0.877 0.054 0.009 0.040
H1B5 0.973 0.091 0.879 0.0168 0.849 0.070 0.014 0.084
H2B1 0.996 0.258 0.894 0.0224 0.771 0.113 0.020 0.087
H2B2 0.806 0.091 1.585 0.0163 0.432 0.094 0.020 0.078
H2B3 0.828 0.045 0.798 0.0080 0.643 0.055 0.010 0.047
H2B4 0.961 0.054 0.863 0.0126 0.638 0.053 0.008 0.042
H2B5 1.324 0.148 0.926 0.0254 0.772 0.127 0.043 0.102
H3B1 0.866 0.139 1.008 0.0090 0.431 0.099 0.018 0.084
H3B2 0.696 0.209 1.411 0.0303 0.435 0.141 0.014 0.263
H3B3 0.936 0.113 1.115 0.0747 0.541 0.029 0.020 0.335
H3B4 1.278 0.128 1.299 0.0142 0.489 0.126 0.035 0.063
H3B5 1.388 0.102 1.175 0.0912 0.214 0.089 0.010 0.060
H4B1 0.888 0.097 1.330 0.0334 0.764 0.089 0.013 0.121
H4B2 0.778 0.052 0.708 0.0762 0.265 0.057 0.008 0.040
H4B3 1.435 0.165 1.333 0.0224 0.850 0.127 0.030 0.086
H4B4 1.395 0.411 0.893 0.0613 0.477 0.108 0.013 0.061
H4B5 0.994 0.323 1.472 0.0483 0.677 0.382 0.020 0.077
H5B1 0.897 0.060 1.247 0.0251 0.647 0.066 0.009 0.041
H5B2 1.124 0.166 1.165 0.0837 0.100 0.120 0.011 0.082
H5B3 1.235 0.242 1.210 0.0882 0.259 0.120 0.013 0.092
H5B4 1.127 0.137 1.459 0.0633 0.918 0.080 0.020 0.110
H5B5 1.536 0.072 1.127 0.0743 0.248 0.057 0.024 0.104

Table 4

Average contents of eight mineral elements in Beiqing 9 under different fertilization conditions mg/g"

处理Treatment Ca Fe Mg Al Na Zn Cu Mn
F0 0.119 0.060 0.145 0.015 0.591 0.061 0.002 0.060
F1(N+P) 1.084 0.083 1.130 0.014 0.388 0.058 0.013 0.068
F2(N+P) 1.087 0.063 1.040 0.056 0.048 0.052 0.011 0.050
F3(N+P) 0.962 0.071 1.082 0.059 0.087 0.050 0.012 0.050
F4(N+P) 0.922 0.067 0.870 0.014 0.851 0.101 0.021 0.084
F1N 0.983 0.132 0.967 0.084 0.664 0.185 0.018 0.068
F2N 0.917 0.148 1.136 0.073 0.930 0.093 0.101 0.054
F3N 0.865 0.782 0.862 0.028 0.185 0.080 0.019 0.066
F4N 0.815 0.312 0.548 0.052 0.111 0.052 0.010 0.048
F1P 0.991 0.514 0.293 0.084 0.378 0.061 0.015 0.056
F2P 1.028 0.473 0.299 0.072 0.434 0.053 0.012 0.045
F3P 1.006 0.404 0.364 0.102 0.570 0.060 0.014 0.049
F4P 0.988 0.421 0.308 0.125 0.199 0.052 0.014 0.082

Fig.2

The contents of SOD, chlorophyll and cytochrome oxidase of Beiqing 9 under different sowing methods and fertilization conditions"

Table 5

Correlation analysis between mineral elements and chlorophyll of highland barley (n=47)"

元素Element Fe Mg Al Na Zn Cu Mn 叶绿素Chlorophyll
Fe 1.000 0.749** 0.678** 0.336* 0.459** 0.392** 0.555** -0.001
Mg 0.749** 1.000 0.680** 0.444** 0.591** 0.230 0.682** 0.057
Al 0.678** 0.680** 1.000 0.196 0.310* 0.426** 0.610** 0.020
Na 0.336* 0.444** 0.196 1.000 0.188 0.256 0.091 -0.095
Zn 0.459** 0.591** 0.310* 0.188 1.000 0.145 0.068 -0.167
Cu 0.392** 0.230 0.426** 0.256 0.145 1.000 0.066 -0.100
Mn 0.555** 0.682** 0.610** 0.091 0.068 0.066 1.000 0.327*
叶绿素Chlorophyll -0.001 0.057 0.020 -0.095 -0.167 -0.100 0.327* 1.000
[1] Casas A M, Gazulla C R, Monteagudo A, et al. Candidate genes underlying QTL for flowering time and their interactions in a wide spring barley (Hordeum vulgare L.) cross. The Crop Journal, 2021, 9(4):862-872.
[2] 罗静, 李玉锋, 胥霞. 青稞中的活性物质及功能研究进展. 食品与发酵工业, 2018, 44(9):300-304.
doi: 10.13995/j.cnki.11-1802/ts.016130
[3] Xu D, Sun D, Diao Y, et al. Fast mapping of a chlorophyll b synthesis-deficiency gene in barley (Hordeum vulgare L.) via bulked-segregant analysis with reduced-representation sequencing. The Crop Journal, 2019, 7(1):58-64.
[4] 王生亚, 薛洁, 徐乃玉, 等. 青稞多糖对糖尿病模型小鼠的降血糖作用及机制研究. 中国药房, 2021, 32(7):807-811.
[5] 李金鹏, 翁颖, 田梦杰, 等. 麦苗营养价值研究进展. 麦类作物学报, 2021, 41(9):1105-1115.
[6] 唐州平. 叶绿素治疗便秘的妙用. 养生月刊, 2014, 35(8):766.
[7] 肖谷清. 微波消解―原子吸收光谱法测定茶叶和栽培土壤中的微量元素. 光谱实验室, 2006, 23(3):493-496.
[8] 张慧娟, 黄莲燕, 张小爽, 等. 青稞面条品质改良的研究. 食品研究与开发, 2017, 38(13):75-81.
[9] 黄益前, 丁捷, 何江红, 等. 青稞馒头配方与工艺研究. 农业与技术, 2016, 36(19):12-16.
[10] 张慧娟, 黄莲燕, 王静, 等. 青稞添加量对面团热机械学性质及馒头品质的影响. 中国食品学报, 2016, 16(4):104-112.
[11] 王晓芹, 代宇, 张宿义, 等. 青稞酒酿造研究进展. 酿酒科技, 2015(3):102-104.
[12] 朱文优, 周守叙, 凌生隆. 青稞醋液态发酵工艺研究. 中国调味品, 2012, 37(7):45-48.
[13] 黄相国, 沈裕虎. 麦绿素及麦绿素产品的开发前景. 麦类作物学报, 2003, 23(1):79-80.
[14] 秦玉川, 丁自勉, 赵纪文. 绿色食品―21世纪的食品. 南京: 江苏人民出版社, 2002:87-113.
[15] 武红霞, 邬飞波, 张国平. 大麦麦绿素的营养价值和开发现状. 中国粮油学报, 2003, 18(4):48-51.
[16] 杨文新, 吴庆. 大麦绿色营养体研究与展望. 大麦与谷类科学, 2003(3):5-6.
[17] 周春来. 不同施肥水平与种植密度对青稞产量的影响. 西藏农业科技, 1993(2):19-22.
[18] 孔建平, 向莉, 柴淑珍, 等. 不同播种密度对青稞昆仑15号生长及产量的影响. 农村科技, 2016(5):23-24.
[19] 次仁云丹. 不同青稞品种的产量构成因素分析. 农业开发与装备, 2017(4):93.
[20] 甘雅文, 唐亚伟, 扎西罗布, 等. 不同种植密度对青稞新品系13-5171的产量及农艺性状的影响. 西藏农业科技, 2019, 41(增1):47-49.
[21] 江楠. 高校食品专业学生思政教育创新研究. 食品工业, 2021, 42(5):531.
[22] 徐菲, 党斌, 杨希娟, 等. 不同青稞品种的营养品质评价. 麦类作物学报, 2016, 36(9):1249-1257.
[23] 张唐伟, 佘永新, 吴雪莲, 等. 不同生态环境下青稞的营养成分和矿质元素差异性分析. 大麦与谷类科学, 2020, 37(1):6-9.
[24] 吴雪莲, 曲航, 邱城, 等. 产地及品种对西藏青稞营养品质的影响. 麦类作物学报, 2017, 37(9):1246-1254.
[25] 贠民政, 韩玉娥, 张毅, 等. 覆膜种植方式对西藏青稞光合特性及产量的影响. 麦类作物学报, 2020, 40(4):482-487.
[26] 侯维海, 王建林, 胡单, 等. 磷肥对西藏青稞叶水势、光合生理及产量因素的影响. 麦类作物学报, 2018, 254(12):1481-1489.
[27] 蔡晓布. 磷锌肥配合施用对青稞产量与品质的影响. 植物营养与肥料学报, 2000(1):117-120.
[28] 吴昆仑. 基因型与环境效应对青稞β-葡聚糖含量的影响. 广东农业科学, 2013, 40(17):5-6,9.
[29] 吴昆仑. 基因型与环境效应对青稞淀粉含量的影响. 西南农业学报, 2011, 24(2):422-424.
[30] 张黎凤, 马天文, 曹海艳. ELISA法在植物检测中的应用研究及改进措施. 现代农业科技, 2016(24):137-138.
[31] 万运帆, 李玉娥, 高清竹, 等. 西藏气候变化趋势及其对青稞产量的影响. 农业资源与环境学报, 2018, 35(4):374-380.
[32] 马其彪, 聂战声, 李云. 高寒山区青稞品种比较试验初报. 甘肃农业科技, 2012(2):25-28.
[33] 关卫星, 杨勇, 董凯宁, 等. 西藏高海拔地区积温与土壤养分对不同青稞新品种(系)产量影响研究初报. 西藏农业科技, 2019, 41(4):32-36.
[34] 应泉盛, 古斌权, 张华峰, 等. 6个大麦品种麦苗产量与营养成分比较. 浙江农业科学, 2017, 58(2):233-234.
doi: 10.16178/j.issn.0528-9017.20170214
[35] 谭大明, 谭海运, 刘国一, 等. 西藏不同黑青稞品种的农艺性状和营养品质分析. 麦类作物学报, 2018, 38(2):142-147.
[36] 张英华, 周顺利, 张凯, 等. 源库调节对小麦不同品种籽粒微量元素及蛋白质含量的影响. 作物学报, 2008, 34(9):1629-1636.
[37] 张秋英, 陈剑锋, 叶月华. 不同施肥方法对大麦苗产量和品质的影响. 大麦与谷类科学, 2010(1):31-33.
[38] 常金华, 张俊梅, 王宝义, 等. 氮肥供应对啤酒大麦品质及产量的影响. 河北农业大学学报, 2000, 23(4):26-28.
[39] 马瑞萍, 韦泽秀, 卓玛. 氮磷配施对青稞生长发育及产量的影响. 西南农业学报, 2015, 28(6):2577-2585.
[40] 张淑香, 王小彬, 金柯, 等. 干旱条件下氮,磷水平对土壤锌,铜,锰,铁有效性的影响. 植物营养与肥料学报, 2001, 7(4):391-396.
[41] 文建成, 汤利, 谭学林, 等. 种植环境和施氮水平影响粳稻稻米铁、锌矿质元素含量. 作物杂志, 2010(1):61-65.
[42] 陈剑锋, 张扬, 张秋英. 不同播种量对大麦苗产量和品质的影响. 福建农业学报, 2014, 29(2):136-138.
[43] 乔海龙, 陈健, 沈会权, 等. 施氮量和种植密度对苏啤3号大麦鲜叶产量及品质的影响. 麦类作物学报, 2009, 29(4):680-684.
[1] Zhou Xin, Zhu Dingying, Zhao Xianglong, Chen Gongxi, Wang Jianlin. Effects of Slow-Release Urea Combined with Fulvic Acid on the Development and Grain Filling Characteristics of Longzi Black Highland Barley [J]. Crops, 2024, 40(4): 232-239.
[2] Fan Yu, Feng Liang, Wang Junzhen, Yang Qiaohui, Ren Yuanhang, Zhang Kaixuan, Zou Liang, Zhou Meiliang, Xiang Dabing. Nutritional Composition Analysis of Different Oats Varieties [J]. Crops, 2024, 40(4): 71-81.
[3] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[4] Chen Jinping, Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü. Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.) [J]. Crops, 2023, 39(6): 160-166.
[5] Wang Shuoli, Ding Songshuang, Wang Ronghao, Li Linlin, Wu Chuang, Wang Jian, Shi Xiangdong. Difference and Correlation Analysis of Mineral Element Contents and Sensory Qualities between Yunnan Province of China and Nicaragua Cigar Tobacco Leaves [J]. Crops, 2023, 39(3): 139-147.
[6] Zhang Yufen, Qi Jingkai, Wang Guiling, Zhao Baoping, Zhou Lei. Study on Geographical Origin of Buckwheat Based on Mineral Element Fingerprint [J]. Crops, 2023, 39(3): 66-74.
[7] Xu Dong, He Jianqing, Zhang Gejie, Liu Haixin, Ma Jinyu, Wang Siyuan. Effects of Fertilizer Combined with Garden Waste Compost on Yield, Quality of Highland Barley and Soil Fertility [J]. Crops, 2023, 39(2): 214-221.
[8] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[9] Zhao Kai, Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen. The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves [J]. Crops, 2022, 38(2): 81-88.
[10] Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160.
[11] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[12] Deng Chaochao, Wang Lei, Xu Ye, Zhou Qi, Su Cuicui, Cai Xiaobin, Miao Pinggui, Zhao Haipeng, Zhang Yan, Wang Yucai, Zhang Xiangping. Effects of Nitrogen and Sowing Rate on Yield and Quality of Fresh Leaves in Barley [2011(07)814] [J]. Crops, 2021, 37(5): 108-113.
[13] Yang Lei, Jin Yandi, Liu Houjun. Effects of Iron, Cadmium and Their Interaction on the Primary Reaction of Photosynthesis in Rice [J]. Crops, 2021, 37(4): 144-151.
[14] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[15] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!