Crops ›› 2025, Vol. 41 ›› Issue (2): 29-39.doi: 10.16035/j.issn.1001-7283.2025.02.005

Previous Articles     Next Articles

Identification and Expression Pattern Analysis of LPAT Family Genes in Brassica napus

Li Kunjie1,2(), Liu Nian1,2(), Ding Lei1,2, Zhu Yan1,2, Meng Daqing1,2, Fan Qixin1,2, Li Yingchun1,2, Chen Jun1,2   

  1. 1Mianyang Academy of Agricultural Sciences, Mianyang 621023, Sichuan, China
    2Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang 621023, Sichuan, China
  • Received:2024-01-03 Revised:2024-03-19 Online:2025-04-15 Published:2025-04-16

Abstract:

Lysophosphatidylcholine acyltransferase (LPAT) plays a crucial role in the accumulation and metabolism of plant fatty acids. To investigate the evolution and expression pattern of the LPAT gene family in Brassica napus, we identified BnLPAT genes in the B.napus genome using bioinformatics methods. The physical and chemical properties, phylogeny, gene structure, cis-elements, and expression patterns of BnLPAT genes were analyzed. The results identified 44 LPAT genes in the B.napus genome, which were unevenly distributed on 17 chromosomes. Based on phylogenetic relationships, they were classified into five branches, LPAT1 to LPAT5, respectively. Members of adjacent branches had shared similar gene structures and conserved motifs. The 42 types of cis-elements were identified in the putative BnLPAT gene promoter regions, including four categories. Furthermore, expression pattern analysis revealed that BnLPAT genes were detected in different tissue parts. We further analyzed the expression characteristics of 12 BnLPAT genes during seed development and four genes in varieties with high, medium, and low oil contents.

Key words: Lysophosphatidylcholine acyltransferase (LPAT), Brassica napus, Identification of gene family, Expression pattern

Table 1

Primers used in this test"

基因名称Gene name 上游引物(5′-3′)Forward primer (5′-3′) 下游引物(5′-3′)Reverse primer (5′-3′)
BnLPAT1-A AGCGTTGGATGCATCTGGTTC GGTTATTGTCAGTTCCTTGA
BnLPAT1-C GCACAATATTAGAGAGTGTT GGTTATTGTCAGTTCCTTGA
BnLPAT4-A ATGGCAGCAGCAGTGATTGT GGTCGAACGAGGACATAGCA
BnLPAT4-C ATGGCAGCAGCAGCAGTGAT CAGAGGTCGAATGAGGACAT
BnLPAT12-A TGAGGCTGATCTTCCAGCATT AGCAGAACACTCTGCATCGCT
BnLPAT14-A GTATCATATATCAGTGGGCA ACTGTGCCAGATACACCCTT
BnLPAT14-C TGTATCATATGTCTGCTTCT ACTGTGCCAGATACACCCTT
BnLPAT19-A AGTATTTGCGGATAATGAGAC AACCTGACCTCTGAGCGAGA
BnLPAT19-C AAGTGTTTGCTGATAATGAG ACCTGATCTCTGAGCCAGAAT
BnLPAT20-A TCACATCCTCCATATTATAG TCAAGTTCGAAGAACGAGCA
BnLPAT20-C CATCCTCCTCCATATTATAGC AGAACGACCAAAGCAACATC
BnLAPT22-C TGTATCATATGTCTGCTTCT CCTCTCGTTGGACATAGACA
BnActin7 TGGGTTTGCTGGTGACGAT TGCCTAGGACGACCAACAATACT

Table 2

Physicochemical properties and subcellular localization of BnLPAT proteins"

基因编号
Gene ID
基因名称
Gene name
氨基酸数目
Number of
amino acids
分子质量
Molecular
weight (kDa)
理论
等电点
pI
不稳定指数
Instability
index
脂肪系数
Aliphatic
coefficient
水溶性平均值
Average water
solubility
亚细胞定位
Subcellular
localization
BnA01g0003370.1 BnLPAT1-A 361 41.53 8.93 46.58 87.20 -0.170 叶绿体,内质网
BnA01g0033510.1 BnLPAT2-A 355 41.02 8.77 39.55 94.96 -0.019 内质网
BnA03g0114510.1 BnLPAT3-A 527 59.81 6.15 38.63 90.61 -0.050 线粒体
BnA03g0128320.1 BnLPAT4-A 390 43.77 9.24 50.09 97.26 0.067 内质网
BnA03g0133720.1 BnLPAT5-A 432 48.25 9.63 45.85 93.87 -0.224 内质网
BnA03g0144790.1 BnLPAT6-A 286 32.09 9.13 52.32 96.12 -0.041 叶绿体,内质网
BnA04g0162010.1 BnLPAT7-A 384 43.19 9.18 41.28 101.59 0.136 内质网
BnA05g0207140.1 BnLPAT8-A 440 48.80 6.24 48.98 78.91 -0.338 叶绿体
BnA05g0211550.1 BnLPAT9-A 376 43.89 9.05 37.63 93.56 0.043 内质网
BnA05g0213610.1 BnLPAT10-A 531 60.03 8.06 42.27 92.34 -0.076 线粒体
BnA07g0286470.1 BnLPAT11-A 399 44.75 6.13 53.03 87.42 -0.182 叶绿体,内质网
BnA07g0288480.1 BnLPAT12-A 380 43.26 8.25 44.55 98.76 0.144 内质网
BnA07g0302330.1 BnLPAT13-A 287 31.98 9.30 47.91 94.11 -0.036 叶绿体,内质网
BnA07g0303170.1 BnLPAT14-A 370 41.87 5.93 48.34 91.38 -0.176 内质网
BnA08g0305940.1 BnLPAT15-A 345 39.42 9.14 34.60 100.06 -0.014 内质网
BnA08g0312680.1 BnLPAT16-A 454 50.01 6.25 43.76 78.00 -0.331 叶绿体
BnA08g0327830.1 BnLPAT17-A 814 92.41 8.00 49.32 96.38 -0.008
BnA09g0362990.1 BnLPAT18-A 451 49.63 6.32 44.65 83.28 -0.202 叶绿体
BnA09g0374960.1 BnLPAT19-A 390 43.76 9.38 47.42 99.51 0.105 内质网
BnA09g0384080.1 BnLPAT20-A 358 39.41 9.67 43.09 87.37 0.037 叶绿体
BnA10g0406100.1 BnLPAT21-A 326 37.21 8.70 47.19 87.30 -0.132 叶绿体,内质网
BnC01g0428330.1 BnLPAT1-C 376 43.22 9.05 47.12 88.88 -0.099 内质网
BnC01g0463380.1 BnLPAT2-C 339 39.24 8.67 42.96 92.27 0.085 内质网
BnC02g0500200.1 BnLPAT13-C 285 31.86 9.24 49.19 96.46 -0.049 叶绿体,内质网
BnC03g0553040.1 BnLPAT18-C 385 42.78 5.86 46.51 78.29 -0.367 叶绿体
BnC03g0566190.1 BnLPAT3-C 534 60.30 5.85 39.86 90.54 -0.057 线粒体,细胞核
BnC03g0576540.1 BnLPAT5-C 432 48.17 9.74 43.64 93.63 -0.214 叶绿体,内质网
BnC03g0615450.1 BnLPAT6-C 286 31.79 9.39 44.60 94.44 -0.030 叶绿体,内质网
BnC03g0616110.1 BnLPAT15-C 333 37.86 8.40 31.42 96.31 0.069 内质网
BnC04g0635520.1 BnLPAT12-C 376 43.16 6.46 48.00 94.63 0.112 内质网
BnC04g0683780.1 BnLPAT10-C 541 61.22 6.68 43.10 90.61 -0.089 线粒体,细胞核
BnC05g0715370.1 BnLPAT8-C 451 49.88 6.33 50.53 77.43 -0.359 叶绿体
BnC06g0752240.1 BnLPAT4-C 391 43.66 9.48 45.11 99.77 0.111 内质网
BnC06g0756180.1 BnLPAT11-C 397 44.50 6.13 54.75 89.82 -0.167 内质网
BnC06g0775100.1 BnLPAT22-C 383 43.04 5.86 49.72 88.54 -0.161 内质网
BnC06g0775680.1 BnLPAT14-C 381 43.06 6.19 50.25 89.00 -0.175 内质网
BnC07g0780780.1 BnLPAT23-C 492 55.49 5.99 40.00 89.15 -0.073 内质网
BnC07g0830090.1 BnLPAT20-C 345 37.98 9.65 42.19 89.54 0.025 叶绿体
BnC08g0842420.1 BnLPAT16-C 456 50.22 6.14 44.19 79.58 -0.302 叶绿体
BnC08g0866950.1 BnLPAT19-C 390 43.73 9.38 46.43 99.51 0.106 内质网
BnC09g0920060.1 BnLPAT21-C 371 42.51 8.92 47.19 92.18 -0.031 内质网
BnUnng0943360.1 BnLPAT9-U 346 40.38 9.01 39.34 90.69 0.032 内质网
BnUnng0994230.1 BnLPAT12-U 380 43.26 8.74 45.79 96.71 0.116 细胞膜,内质网
BnUnng1007920.1 BnLPAT2-U 378 43.65 8.73 38.59 95.37 0.096 内质网

Fig.1

Phylogenetic tree of LPAT members in Arabidopsis, B. rapa, B. oleracea and B. napus The green, blue, purple, and yellow dots represent members from Arabidopsis, B. rapa, B. oleracea and B. napus, respectively."

Fig.2

The chromosomal localization and segmental duplicated pairs of the BnLPAT genes Different chromosomes are marked with different colors, and the genes at both ends of the brown line represent the genes that have segmental duplicated relationships."

Fig.3

Conserved motifs and gene structure of BnLPATs (a) Neighbor-Joining clustering trees of 44 BnLPATs; (b) BnLPATs conserved motifs, with 10 motifs detected. Different motifs are represented by differently colored rectangles. (c) Gene structure of BnLPAT. The coding sequence is represented by a gray rectangle, the upstream and downstream non-coding regions are represented by a blue rectangle, and the intron sequence is represented by a line."

Fig.4

Sequence alignment of BnLPAT proteins (a) ClustalW method for multiple sequence alignment of BnLPAT proteins; (b) The LOGO composition of two conserved domains."

Fig.5

Analysis of BnLPAT gene cis-elements (a) Neighbor-Joining clustering trees of 44 BnLPATs; (b) 42 cis-elements are classified into four types according to their corresponding types, and the numbers in the heat map represent the number of occurrences of the elements; (c) The positions of 22 cis-elements in the 2000 bp upstream region of the BnLPAT genes, with different cis-elements represented by different colored rectangles."

Fig.6

Expression pattern of BnLPAT genes (a) Transcriptome expression profile of BnLPAT genes in different tissues. (b) Expression pattern of 12 BnLPAT genes during seed development, *: 0.01 < P < 0.05; **: P < 0.01. The same below."

Fig.7

Expression pattern of four BnLPAT genes in different varieties"

[1] 施文华, 严茂林, 刘昌勇, 等. 我国油料进口贸易的结构特征及对策分析. 中国油脂, 2023, 48(8):1-8.
[2] 何微, 李俊, 王晓梅, 等. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2):1-7.
[3] 王汉中. 中国油菜品种改良的中长期发展战略. 中国油料作物学报, 2004, 26(3):99-102.
[4] Harwood J L, Guschina I A. Regulation of lipid synthesis in oil crops. FEBS Letters, 2013, 587(13):2079-2081.
doi: 10.1016/j.febslet.2013.05.018 pmid: 23684640
[5] Gibellini F, Smith T K. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 2010, 62(6):414-428.
doi: 10.1002/iub.337 pmid: 20503434
[6] Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 2016,67:179-206.
[7] Körbes A P, Kulcheski R, Margis R, et al. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 2016,96:55-69.
[8] Leung D W. The structure and functions of human lysophosphatidic acid acyltransferases. Frontiers in Bioscience, 2001,6:944-953.
[9] Maisonneuve S, Bessoule J J, Lessire R, et al. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiology, 2010, 152(2):670-684.
doi: 10.1104/pp.109.148247 pmid: 19965969
[10] 张军平, 江木兰, 龚阳敏, 等. 三角褐指藻LPAAT基因在酵母中表达对脂肪酸的影响. 中国油料作物学报, 2012, 34(5):483-488.
[11] Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiology, 2004, 134(3):1206-1216.
[12] Wang N H, Ma J J, Pei W F, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics, 2017, 18(1):218.
doi: 10.1186/s12864-017-3594-9 pmid: 28249560
[13] 陈四龙. 花生油脂合成相关基因的鉴定与功能研究. 北京: 中国农业科学院, 2013.
[14] 周雅莉, 黄旭升, 郝月茹, 等. 紫苏溶血磷脂酸酰基转移酶基因的克隆与功能分析. 生物工程学报, 2022, 38(8):3014-3028.
[15] Song J M, Guan Z, Hu J, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1):34-45.
[16] Lian Z, Nguyen C D, Liu L, et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnology Journal, 2022, 20(8):1622-1635.
[17] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21):2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[18] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[19] Gu Z L, Cavalcanti A, Chen F C, et al. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology and Evolution, 2002, 19(3):256-262.
[20] Chen C C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[22] Mishra P, Singh U, Pandey C M, et al. Application of student's t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 2019, 22(4):407-411.
[23] Taylor J S, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annual Review of Genetics, 2004,38:615-643.
[24] Agarwal A K, Sukumaran S, Bartz R, et al. Functional characterization of human 1-acylglycerol-3-phosphate-O- acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. The Journal of Endocrinology, 2007, 193(3):445-457.
[25] Wang P D, Xiong X J, Zhang X B, et al. A review of erucic acid production in brassicaceae oilseeds: progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science, 2022,13:899076.
[26] Bradley R M, Duncan R E. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Current Opinion in Lipidology, 2018, 29(2):110-115.
doi: 10.1097/MOL.0000000000000492 pmid: 29373329
[27] Rao S S, Hildebrand D. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids, 2009, 44(10):945-951.
[28] 郝月茹. 紫苏溶血磷脂酸酰基转移酶基因(PfLPATs)的鉴定及功能分析. 太原:山西农业大学, 2023.
[29] Bin Y, Wakao S, Fan J L, et al. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant and Cell Physiology, 2004, 45(5):503-510.
pmid: 15169931
[30] Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26):15682-15687.
[31] Kong H Z, Landherr L L, Frohlich M W, et al. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. The Plant Journal, 2007, 50(5):873-885.
[32] Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004,4:10.
[33] Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. The Plant Cell, 2005, 17(4):1073-1089.
[34] Kim H U, Vijayan P, Carlsson A S, et al. A mutation in the LPAT1 gene suppresses the sensitivity of fab 1 plants to low temperature. Plant Physiology, 2010, 153(3):1135-1143.
[35] Hishikawa D, Shindou H, Kobayashi S, et al. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8):2830-2835.
[36] Schmidt J A, Brown W J. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. The Journal of Cell Biology, 2009, 186(2):211-218.
[37] 王芹. 甘蓝型油菜种子发育进程中油脂积累差异及关键基因表达. 重庆:西南大学, 2022.
[1] Zou Xiaoyun, Guan Mei, Guan Chunyun. Studies on Plant Morphological and Physiological Characteristics of High Nitrogen Absorption in Brassica napus L. [J]. Crops, 2022, 38(5): 97-103.
[2] Lin Xiaoyang, Du Dezhi, Liu Haidong, Li Jun. Core Collection Construction of Extra-Early Restorer Lines in Spring Brassica napus L. [J]. Crops, 2022, 38(1): 31-37.
[3] Lü Weisheng, Xiao Xiaojun, Huang Tianbao, Xiao Guobin, Li Yazhen, Xiao Fuliang, Han Depeng, Zheng Wei. Application Effect of Slow-Released Formulated Fertilizer on Oilseed Rape (Brassica napus L.) under Late Sowing Rice [J]. Crops, 2020, 36(6): 143-150.
[4] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!