Crops ›› 2025, Vol. 41 ›› Issue (3): 125-132.doi: 10.16035/j.issn.1001-7283.2025.03.017

Previous Articles     Next Articles

Effects of Three Exogenous Plant Growth Regulators on the Cold Tolerance of Maize Seedlings

Jin Zihao1(), Zhao Wenqing1, Wang Fang1,2(), Wang Wei1,2, Peng Yunling1,2, Chang Fangguo1,2   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germlplasm Enhancement, Lanzhou 730070, Gansu, China
  • Received:2024-01-23 Revised:2024-05-15 Online:2025-06-15 Published:2025-06-03

Abstract:

Using maize low-temperature sensitive inbred line T165 as the test material, different concentrations of 5-aminolevulinic acid (5-ALA), methyl jasmonate (MeJA), and strigolactone (SL) were treated to determine 12 growth physiological indicators related to seedling cold tolerance, and the comprehensive differences among different treatments were compared under the simulated low-temperature stress at 10 °C. The results showed that 5-ALA at concentrations of 1-30 mg/L, MeJA at concentrations of 0.1-20.0 mg/L, and SL at concentrations of 0.05-0.40 mg/L could promote the accumulation of substances in the aboveground and underground parts of maize seedlings under low temperature, as well as the metabolism of osmoregulators, enhancing the stability of the cytoplasmic membrane. The sustained release effect showed a trend of first increasing and then decreasing with concentration. Principal component analysis showed that the optimal slow-release concentration of 5-ALA under low temperature stress was 20 mg/L, and the comprehensive evaluation value (D) was 2.72; The optimal sustained release concentration of MeJA under low temperature stress is 1.0 mg/L, and D was 2.24; The optimal slow-release concentration of SL under low temperature stress was 0.30 mg/L, and the D was 3.01.

Key words: Maize, Low temperature stress, Exogenous substance, Alleviation effect

Table 1

Experimental treatments"

处理
Treatment
浓度Concentration (mg/L) 温度
Temperature (℃)
5-ALA MeJA SL
NT 0 0.0 0.00 25
H0 0 0.0 0.00 10
H1 1 0.1 0.05 10
H2 5 1.0 0.10 10
H3 10 5.0 0.20 10
H4 20 10.0 0.30 10
H5 30 20.0 0.40 10

Table 2

Effects of exogenous 5-ALA, MeJA, and SL on the growth of maize seedlings under low temperature stress"

外源物质Exogenous substance 处理Treatment 根鲜重RFW (g) 苗长SL (cm) 苗鲜重SFW (g) 叶面积LA (cm2)
5-ALA NT 0.38±0.06a 23.33±0.60a 0.80±0.08a 9.78±0.70a
H0 0.25±0.03b 13.33±0.95d 0.38±0.01c 4.77±0.91c
H1 0.28±0.02ab 14.25±0.21cd 0.38±0.03c 4.87±0.20c
H2 0.32±0.05ab 14.35±0.47c 0.48±0.06bc 6.11±1.04bc
H3 0.33±0.07ab 16.76±1.35b 0.49±0.02bc 6.98±0.56b
H4 0.28±0.06ab 16.90±1.12b 0.57±0.10b 7.13±1.16b
H5 0.25±0.06b 15.13±1.23b 0.50±0.09bc 5.98±1.22bc
MeJA NT 0.39±0.04a 21.70±2.21a 0.78±0.10a 9.82±0.70a
H0 0.25±0.04c 12.43±0.92c 0.44±0.04c 4.96±0.90c
H1 0.28±0.06bc 13.75±0.54bc 0.52±0.06bc 5.64±0.31bc
H2 0.38±0.06ab 15.20±1.03b 0.66±0.10ac 6.76±0.80b
H3 0.32±0.04abc 14.10±0.48bc 0.56±0.05bc 5.67±0.48bc
H4 0.31±0.05abc 13.48±0.83bc 0.55±0.07bc 5.56±1.12bc
H5 0.26±0.03bc 13.13±0.71bc 0.50±0.05c 5.52±0.51bc
SL NT 0.37±0.02ab 21.83±0.57a 0.77±0.03a 9.36±0.41a
H0 0.24±0.03d 13.78±0.40d 0.44±0.02d 5.17±0.81c
H1 0.27±0.07cd 14.77±0.26cd 0.53±0.06cd 5.43±0.71c
H2 0.31±0.03bcd 15.00±0.88c 0.58±0.03c 6.04±0.86bc
H3 0.41±0.02a 16.23±0.76b 0.63±0.11bc 7.21±1.39b
H4 0.39±0.05ab 16.98±0.40b 0.71±0.05ab 7.53±0.73b
H5 0.33±0.02bc 16.40±0.39b 0.58±0.03b 7.32±0.38b

Fig.1

Effects of different exogenous hormones on antioxidant system characteristics of maize seedlings under low temperature stress Different lowercase letters represent significant difference under different treatments of the same exogenous substance (P < 0.05). The same below."

Fig.2

Effects of different exogenous substance on osmotic regulation of maize seedlings under low temperature stress"

Fig.3

Effects of different exogenous substances on membrane permeability of maize seedlings under low temperature stress"

Table 3

Eigenvalues and contribution rates of three comprehensive indexes of exogenous material treatments"

外源物质Exogenous substance 主成分PCA 特征值Eigenvalue 贡献率Contribution rate (%) 累计贡献率Cumulative contribution rate (%)
5-ALA CI (1) 4.792 59.894 59.894
CI (2) 2.058 25.728 85.622
MeJA CI (1) 4.975 62.186 62.186
CI (2) 1.646 20.572 82.757
SL CI (1) 5.073 63.413 63.413
CI (2) 1.975 24.693 88.106

Table 4

Comprehensive index coefficients [CI(x)] and score coefficients [W(x)] of the treatments of three exogenous substances"

外源物质Exogenous substance 主成分PCA SOD POD CAT SP Pro SS MDA REC
5-ALA CI (1) 0.914 0.888 0.869 0.827 0.427 0.511 -0.898 -0.691
CI (2) -0.103 0.180 0.110 -0.156 0.820 0.829 0.360 0.699
W (1) 0.417 0.406 0.397 0.378 0.195 0.234 -0.410 -0.316
W (2) -0.072 0.125 0.076 -0.109 0.572 0.578 0.251 0.487
MeJA CI (1) 0.912 0.923 0.937 -0.325 -0.873 -0.960 -0.659 0.434
CI (2) 0.230 0.243 -0.160 -0.846 0.218 0.092 0.727 0.456
W (1) 0.409 0.414 0.420 -0.146 -0.391 -0.431 -0.296 0.194
W (2) 0.180 0.190 -0.125 -0.659 0.170 0.071 0.567 0.356
SL CI (1) 0.876 0.828 0.932 0.639 0.538 0.571 -0.914 -0.944
CI (2) -0.332 -0.377 -0.206 0.602 0.765 0.785 0.253 0.231
W (1) 0.389 0.368 0.414 0.284 0.239 0.253 -0.406 -0.419
W (2) -0.237 -0.268 -0.147 0.429 0.544 0.558 0.180 0.164

Table 5

Principal component scores (F), weight (IW), comprehensive evaluation values (D)"

外源物质Exogenous substance 处理Treatment 主成分得分F (1) 主成分得分F (2) 综合评价值D 排名Ranking
5-ALA NT 1.443 -2.542 0.2475 4
H0 -3.799 0.055 -2.6428 7
H1 -1.457 0.349 -0.9152 6
H2 0.013 0.394 0.1273 5
H3 1.448 1.281 1.3979 2
H4 3.120 1.794 2.7222 1
H5 1.443 -2.542 0.5932 3
权重 0.700 0.300
MeJA NT 1.158 -2.526 0.0528 3
H0 -3.409 0.279 -2.3026 7
H1 0.445 -0.151 0.2662 4
H2 2.746 1.051 2.2375 1
H3 1.074 0.426 0.8796 2
H4 -0.557 0.138 -0.3485 5
H5 -1.782 -0.383 -1.3623 6
权重 0.776 0.224
SL NT 1.098 -2.524 0.0114 4
H0 -4.065 0.289 -2.7588 7
H1 -1.862 0.360 -1.1954 6
H2 -1.196 1.007 -0.5351 5
H3 0.508 1.617 0.8407 2
H4 3.572 1.686 3.0062 1
H5 0.647 0.566 0.6227 3
权重 0.751 0.249
[1] Beatriz G M, Lekfeldt J D S, Magid J, et al. Seed treatment with Penicillium sp. or Mn/Zn can alleviate the negative effects of cold stress in maize grown in soils dependent on soil fertility. Journal of Agronomy and Crop Science, 2018, 204(6):603-612.
[2] Cutforth H W, Shaykewich C F, Cho C M. Effect of soil water and temperature on corn (Zea mays L.) root growth during emergence. Canadian Journal of Soil Science, 1986, 66(1):51-58.
[3] 邢则森. 低温胁迫和干旱胁迫下S-诱抗素拌种对玉米生长的调控作用. 泰安:山东农业大学, 2018.
[4] Adam S, Murthy S D S. Effect of cold stress on photosynthesis of plants and possible protection mechanisms. New Delhi: Springer India, 2014.
[5] Gu Y N, He L, Zhao C J, et al. Biochemical and transcriptional regulation of membrane lipid metabolism in maize leaves under low temperature. Frontiers in Plant Science, 2017,8:2053.
[6] Lee J H, Oh M M. Short-term low temperature increases phenolic antioxidant levels in kale. Horticulture Environment and Biotechnology, 2015, 56(5):588-596.
[7] Leipner J. Chilling stress in maize. Molecules and Cells, 2009, 10 (2):199-205.
[8] Selim S, Hassan Y M, Saleh A M, et al. Actinobacterium isolated from a semi-arid environment improves the drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry, 2019, 142(9):15-21.
[9] Bindu R C, Vivekanandan M. Hormonal activities of 5- aminolevulinic acid in callus induction and micropropagation. Plant Growth Regulation, 1998, 26(1):15-18.
[10] 徐伟, 严善春. 茉莉酸在植物诱导防御中的作用. 生态学报, 2005, 25(8):2074-2082.
[11] Omoarelojie L O, Kulkarni M G, Finnie J F, et al. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemitory, 2020,155:965-979.
[12] 唐超男. 外源独脚金内酯调控辣椒幼苗低温耐受性的生理与分子机制. 兰州:甘肃农业大学, 2021.
[13] 于文颖, 冯锐, 纪瑞鹏, 等. 苗期低温胁迫对玉米生长发育及产量的影响. 干旱地区农业研究, 2013, 31(5):220-226.
[14] 张晓聪, 周羽, 张林, 等. 玉米自交系芽期耐冷性鉴定. 作物杂志, 2016(2):21-26.
[15] 彭云玲, 赵小强, 闫慧萍, 等. 不同玉米自交系耐深播性评价及遗传多样性分析. 草业学报, 2016, 25(7):73-86.
doi: 10.11686/cyxb2015277
[16] 李向岭, 赵明, 李从锋, 等. 玉米叶面积系数动态特征及其积温模型的建立. 作物学报, 2011, 37(2):321-330.
[17] 董扬. 低温胁迫对不同耐冷性糜子品种苗期耐冷性的影响. 作物杂志, 2024(6):91-96.
[18] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[19] 卫昭君, 牛冰洁, 王永新, 等. 茉莉酸甲酯对盐胁迫下偏关苜蓿种子萌发和幼苗生长的影响. 草地学报, 2020, 28(4):998-1005.
doi: 10.11733/j.issn.1007-0435.2020.04.017
[20] Wang D F, Naidu S L, Portis A R, et al. Can the cold tolerance of C4 photosynthesis in Miscanthusxgiganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco?. Journal of Experimental Botany, 2008, 59(7):1779-1787.
[21] Long S P. C4 photosynthesis at low temperatures. Plant,Cell and Environment, 1983, 6(4):345-363.
[22] 赵俊芳, 杨晓光, 刘志娟. 气候变暖对东北三省春玉米严重低温冷害及种植布局的影响. 生态学报, 2009, 29(12):6544-6551.
[23] 闫慧萍, 彭云玲, 赵小强, 等. 外源24-表油菜素内酯对逆境胁迫下玉米种子萌发和幼苗生长的影响. 核农学报, 2016, 30(5):988-996.
doi: 10.11869/j.issn.100-8551.2016.05.0988
[24] 陈银萍, 王晓梅, 杨宗娟, 等. NO对低温胁迫下玉米种子萌发及幼苗生理特性的影响. 农业环境科学学报, 2012, 31(2):270-277.
[25] 孙玉珺, 吴玥, 马德志, 等. 外源油菜素内酯对低温胁迫下玉米发芽及幼苗生理特性的影响. 华北农学报, 2019, 34(3):119-128.
[26] 孙永平, 张治平, 徐呈祥, 等. 5-氨基乙酰丙酸处理对低温下西瓜叶片快速叶绿素荧光诱导曲线的影响. 园艺学报, 2009, 36(5):671-678.
[27] 刘卫琴, 康琅, 汪良驹. ALA对草莓光合作用的影响及其与抗氧化酶的关系. 西北植物学报, 2006, 26(1):57-62.
[28] 张子幸. 钙信号在茉莉酸甲酯调控西瓜低温抗性中的作用及机理. 杨凌:西北农林科技大学, 2021.
[29] 庞娟. 生长素与独脚金内酯调控黄芪幼苗根系生长发育的机制研究. 呼和浩特:内蒙古大学, 2020.
[30] 朱恒达, 王策, 李伟, 等. 丛枝菌根真菌和外源褪黑素提高黄瓜抗冷性的生理机制. 植物生理学报, 2022, 58(7):1254-1262.
[31] Chen D Q, Wang S W, Cao B B, et al. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Frontiers in Plant Science, 2015,6:1241.
[32] 崔静宇, 关小康, 杨明达, 等. 基于主成分分析的玉米萌发期抗旱性综合评定. 玉米科学, 2019, 27(5):62-72.
[1] Hou Yue, Wang Hongliang, Li Jie, Li Chunjie, Chen Fanjun. Research Advances on the Effects of Cereal/Legume Forage Intercropping on Forage Quality and Nitrogen Uptake [J]. Crops, 2025, 41(3): 1-10.
[2] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 41(3): 149-155.
[3] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 41(3): 178-184.
[4] Zhang Zhengjie, Yang Guohua, Guo Ruihong, Cheng Kaihua, Mi Xingwang, Liu Fei. Comprehensive Evaluation of Regional Trials for the Spring Maize in Northwest China Based on DTOPSIS Method and Membership Function Method [J]. Crops, 2025, 41(3): 78-84.
[5] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[6] Chang Hongbing, Wang Chen, He Meijing, Cao Ximin, Yu Fengfang, Cao Xiaoliang, Song Wei, Lü Aizhi. Genetic Diversity Analysis of 69 Maize Germplasm Resources Based on SSR Markers [J]. Crops, 2025, 41(2): 47-53.
[7] Li Wenyue, Yu Tao, Cao Shiliang, Ma Xuena, Tang Gui, Gao Li, Yang Gengbin. Genetic Diversity Analysis of 96 Waxy Maize Inbred Lines Based on SNP Chip [J]. Crops, 2025, 41(2): 74-78.
[8] Sun Yanjie, Wei Guocai, Wu Yuheng, Shi Yunqiang, Shao Yong, Liu Yingrui, Nan Yuantao, Zhang Weiyao. Genetic Diversity Analysis of 100 Maize Germplasm Resources by SNP Markers [J]. Crops, 2025, 41(2): 14-19.
[9] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[10] Zhou Miaomiao, He Ruitong, Li Lan, Wang Hongxin, Peng Haoyuan, Zhang Yubo, Zhang Dan, Wang Jinbin, Luo Xinning, Qi Bingqin. Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density [J]. Crops, 2025, 41(1): 162-169.
[11] Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234.
[12] Li Zesong, Xiao Shanshan, Zhang Yifei, Li Guibin, Lu Yuxin, Liu Haichen, Chen Zhongxu. Effects of Intercropping of Varieties with Different Maturity Stages on Grain Dehydration Performance and Grain Weight of Maize after Physiological Maturity [J]. Crops, 2025, 41(1): 99-110.
[13] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[14] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[15] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!