Crops ›› 2025, Vol. 41 ›› Issue (1): 99-110.doi: 10.16035/j.issn.1001-7283.2025.01.012

;

Previous Articles     Next Articles

Effects of Intercropping of Varieties with Different Maturity Stages on Grain Dehydration Performance and Grain Weight of Maize after Physiological Maturity

Li Zesong1(), Xiao Shanshan1, Zhang Yifei1,2(), Li Guibin1, Lu Yuxin1, Liu Haichen1, Chen Zhongxu1   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University / Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing 163319, Heilongjiang, China
  • Received:2024-01-23 Revised:2024-04-11 Online:2025-02-15 Published:2025-02-12

Abstract:

In order to examine the characteristics of changes in grain moisture content, dehydration rate, and grain weight of maize varieties with different maturity stages in intercropping patterns during the period of dewatering of stalks in field after physiological maturity, three different varieties of maize were used as experimental materials: Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Dongnong 264 (DN264). The main treatment involved intercropping a shorter growth period variety (DN264) with two longer growth varieties (ZD958 and XY335), namely (Z‖D) and (X‖D). The subtreatments were different numbers of rows of intercropping, namely 6:6, 4:4, 2:2, 1:1, 0:1, and 1:0, with the monocrops of each variety (0:1, 1:0) as control treatments. The results showed that with the decreasing of the number of intercropped rows, the fertility period of varieties with long fertility periods showed a tendency to shorten, while the fertility period of varieties with short fertility periods showed a tendency to lengthen; the moisture contents of grains after physiological maturity of varieties with longer growth period gradually decreased, the dehydration rate of grains accelerated, and the cumulative temperature required to reach the standard of machine harvesting was reduced, while the varieties with shorter growth period showed the opposite trend, but differences was no significant compared with that of their monocropping. From 2021 to 2022, the average grain moisture content of Z‖D-(6:6-1:1) and X‖D-(6:6-1:1) decreased by 10.08%-17.54% compared with that of single cropping. The intercropping of maize varieties with different maturity could also increase the grain weight of the varieties with long maturity and reach the maximum under 1:1 treatment, while the grain weight of the varieties with short maturity had a tendency to decrease; the correlation analysis showed that there was no significant correlation between the 100-grain weight of the maize varieties with different maturity and the moisture content. The extension of the number of days with standing stalks in the field could effectively reduce the average moisture content of grains during harvest period in the intercropping composite population as the number of days of field stationing of the stalks was extended, and there was no significant effect on grain weight.

Key words: Maize, Varieties with different maturity, Intercropping, Dehydration performance, Grain weight

Table 1

Variety characteristics"

品种
Variety
选育单位
Breeding unit
生育期
Growing period (d)
有效积温需求
Effective accumulated temperature demand (℃)
籽粒类型
Grain type
郑单958 ZD958 河南农业科学院粮食作物研究所 128 2750 半马齿型
先玉335 XY335 铁岭先锋种子有限公司 127 2650 半硬粒型
东农264 DN264 东北农业大学 122 2550 马齿型

Fig.1

Day-by-day temperature and daily precipitation variations during maize growth period from 2021 to 2022"

Fig.2

The growth period of varieties of each maturity under intercropping conditions"

Table 2

Grain moisture contents and dehydration rates of varieties with various maturity stages under intercropping conditions"

年份
Year
间作处理
Intercropping
treatment
间作行数
Intercropping
rows
生理成熟期含水率
Moisture content in physiological
maturity stage (%)
收获期含水率
Moisture content
in harvest period (%)
生理成熟后平均脱水速率
Average dehydration rate after
physiological maturity [%/(℃·d)]
LGPV SGPV LGPV SGPV LGPV SGPV
2021 Z‖D 1:00 36.99a 31.61a 0.0195c
6:06 36.27b 31.17ab 30.43b 22.06a 0.0207bc 0.0228a
4:04 35.86c 31.55ab 29.84c 22.52a 0.0213abc 0.0223a
2:02 35.36d 31.79ab 28.84d 23.42a 0.0218ab 0.0220a
1:01 34.68e 32.28a 28.01e 24.12a 0.0223a 0.0216a
0:01 30.71b 21.02a 0.0242a
X‖D 1:00 34.79a 28.65a 0.0221c
6:06 34.41b 30.96a 27.73b 21.81ab 0.0224bc 0.0241a
4:04 33.81c 31.32a 27.06c 22.38ab 0.0226abc 0.0239a
2:02 33.28d 31.53a 26.08d 23.21ab 0.0227ab 0.0236a
1:01 32.68e 32.01a 25.26e 23.74a 0.0234a 0.0233a
0:01 30.71a 21.02b 0.0242a
2022 Z‖D 1:00 37.61a 32.32a 0.0188c
6:06 37.24b 31.64a 31.67b 24.31ab 0.0189bc 0.0211a
4:04 36.67c 31.85a 30.99c 24.72ab 0.0193abc 0.0206a
2:02 36.14d 32.21a 30.01d 25.61ab 0.0199ab 0.0198a
1:01 35.61e 32.41a 29.38e 26.09a 0.0202a 0.0195a
0:01 31.15a 23.13b 0.0225a
X‖D 1:00 35.31a 29.36a 0.0203c
6:06 34.96b 31.44ab 28.61b 24.19ab 0.0206c 0.0220a
4:04 34.42c 31.75ab 27.94c 24.68ab 0.0210bc 0.0214a
2:02 33.99d 32.16ab 26.93d 25.58ab 0.0219b 0.0205a
1:01 33.68e 32.55a 26.27e 26.06a 0.0230a 0.0196a
0:01 31.15b 23.13b 0.0225a
FF-value
年份Year (Y) 936.89** 4.29* 5438.61** 33.33** 99.50** 7.23**
品种Variety (V) 6432.44** 0.33 46 683.22** 0.1 112.03** 0.95
间作行数Intercropping rows (IR) 782.64** 5.37** 7298.84** 7.13** 21.31** 0.96
Y×V 18.83** 0.14 93.90** 0.04 3.13 0.14
Y×IR 6.26** 0.03 33.95** 0.01 0.25 0.08
V×IR 3.52* 0.03 0.91 0.01 0.53 0.07
Y×V×IR 3.25* 0.03 6.24** 0.01 0.77 0.01

Fig.3

Average grain moisture contents at harvest stage in intercropping composite groups The different lowercase letters indicate significant difference at P < 0.05 level, the same below."

Fig.4

Dehydration rates of grains at various stages after physiological maturity of various maturity varieties under intercropping conditions"

Table 3

Logistic Power model fitting results after physiological maturity of various maturity varieties under intercropping conditions"

年份
Year
间作处理
Intercropping treatment
间作行数
Intercropping rows
b c R2 S-28AT (℃·d) S-25AT (℃·d)
LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV LGPV SGPV
2021 Z‖D 1:0 917.32 1.725 0.992 331 473
6:6 901.43 785.91 1.747 1.865 0.986 0.994 307 138 443 246
4:4 886.08 794.27 1.746 1.872 0.987 0.995 283 149 418 258
2:2 854.63 816.27 1.701 1.924 0.991 0.994 265 158 400 266
1:1 839.60 827.47 1.701 1.919 0.992 0.995 241 177 373 286
0:1 754.44 1.812 0.997 119 228
X‖D 1:0 904.98 1.803 0.990 293 424
6:6 878.12 761.11 1.742 1.800 0.985 0.997 287 133 420 243
4:4 866.44 768.67 1.732 1.803 0.985 0.997 272 144 405 255
2:2 852.24 798.29 1.806 1.869 0.99 0.993 234 156 357 266
1:1 837.69 810.41 1.805 1.875 0.989 0.993 212 173 333 284
0:1 754.44 1.812 0.997 119 228
2022 Z‖D 1:0 893.10 1.718 0.984 358 497
6:6 868.40 768.40 1.663 1.836 0.981 0.997 347 151 489 259
4:4 851.65 777.99 1.653 1.854 0.982 0.996 324 161 465 269
2:2 830.27 792.08 1.68 1.850 0.974 0.996 288 177 422 287
1:1 817.15 800.32 1.687 1.840 0.977 0.995 265 192 396 305
0:1 745.02 1.832 0.996 126 231
X‖D 1:0 869.88 1.724 0.992 326 461
6:6 852.62 757.41 1.764 1.825 0.992 0.996 294 141 422 249
4:4 838.55 768.76 1.755 1.838 0.992 0.995 275 155 401 263
2:2 820.44 783.79 1.734 1.843 0.993 0.995 260 172 386 282
1:1 802.65 795.07 1.738 1.837 0.993 0.995 231 191 354 303
0:1 745.02 1.832 0.996 126 231

Fig.5

Changes of 100-grain weight at various stages of physiological maturity of varieties with various maturity stages under intercropping conditions"

Fig.6

Relationship between grain moisture content and 100-grain weight after physiological maturity of different maturity varieties under various intercropping ratios NS indicates no significant correlation."

[1] 刘天昊, 张翼飞, 王怀鹏, 等. 叶面喷施硅肥对寒地玉米干物质积累分配及产量品质的调控效应. 作物杂志, 2021(4):112-117.
[2] 李少昆, 王克如, 谢瑞芝, 等. 机械粒收推动玉米生产方式转型. 中国农业科学, 2018, 51(10):1842-1844.
[3] 李少昆, 王克如, 初振东, 等. 黑龙江第1-第3积温带玉米机械粒收现状及品种特性分析. 玉米科学, 2019, 27(1):110- 117.
[4] 吴琼, 杨克军, 张翼飞, 等. 不同基因型玉米耐密植抗倒性分析及其鉴定指标的筛选. 玉米科学, 2017, 25(4):40-47.
[5] 方会敏, 牛萌萌, 史嵩, 等. 机械收获方式及籽粒含水率对玉米收获质量的影响. 农业工程学报, 2019, 35(18):11-18.
[6] 霍仕平. 玉米灌浆期籽粒脱水速率的研究进展(综述). 玉米科学, 1993(4):39-44.
[7] 银学波, 明博, 侯俊峰, 等. 基于X-rayμCT技术的玉米籽粒结构特征的粒位效应分析. 农业工程学报, 2021, 37(7):8-14.
[8] 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014(2):76-79.
[9] 柴宗文, 王克如, 郭银巧, 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11):2036-2043.
[10] Adeyemi A A. Determination of physiological maturity in corn. Knoxville:University of Tennessee,1979.
[11] 王克如, 李璐璐, 高尚, 等. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47(12):2440-2449.
[12] Hou L Y, Wang K R, Wang Y Z, et al. In-field harvest loss of mechanically-harvested maize grain and affecting factors in China. International Journal of Agricultural and Biological Engineering, 2021, 14(1):29-37.
[13] Farnham D E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agronomy Journal, 2001, 93 (5):1049-1053.
[14] Widdicombe W D, Thelen K D. Row width and plant density effects on corn grain production in the Northern Corn Belt. Agronomy Journal, 2002, 94(5):1020-1023.
[15] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11):2027-2035.
[16] 黄兆福, 李璐璐, 侯梁宇, 等. 不同种植区玉米生理成熟后田间站秆脱水的积温需求. 中国农业科学, 2022, 55(4):680-691.
[17] University of Wisconsin. Grain harvesting. (2006-02-01) [2024-01-01] http://corn.agronomy.wisc.edu/Management/L032.aspx.
[18] 张翼飞, 于崧, 王玉凤, 等. 促进玉米子粒脱水的农艺措施研究进展. 作物杂志, 2019(1):1-8.
[19] 闫丽慧, 王昌亮, 常建智, 等. 气象因子对黄淮海区粒收玉米子粒灌浆与脱水特性的影响. 玉米科学, 2022, 30(6):78- 84,92.
[20] 李潮海, 苏新宏, 孙敦立. 不同基因型玉米间作复合群体生态生理效应. 生态学报, 2002, 12(22):2096-2103.
[21] 胡旦旦, 张吉旺, 刘鹏, 等. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6):920- 930.
[22] 肖珊珊, 张翼飞, 杨克军, 等. 不同熟期品种间作对春玉米籽粒灌浆、脱水特性及产量的影响. 中国农业科学, 2022, 55(12):2294-2310.
[23] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报, 2004, 27(4):20-25.
[24] 李璐璐, 明博, 高尚, 等. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51(10):1878-1889.
[25] 朱亚利, 王晨光, 杨梅, 等. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47(3):507-519.
[26] Wrrington I J, Kanemasu E T. Corn growth response to temperature and photoperiod II. Leaf initiation and leaf appearance rates. Agronomy Journal, 1983, 75(5):755-761.
[27] 于维学. 积温对玉米生长发育和产量形成初探. 哈尔滨师范大学自然科学学报, 1990(2):92-95.
[28] 毛振强, 宇振荣, 刘洪. 冬小麦及其叶片发育积温需求研究. 中国农业大学学报, 2002, 7(5):14-19.
[29] Muchow R C. Effect of high temperature on grain growth in field grown maize. Field Crops Research, 1990, 23(2):145-158.
[30] Stewart D W, Dwyer L M, Carrigan L L. Phenological temperature response of maize. Agronomy Journal, 1998, 90 (1):73-79.
[31] 雷蕾, 王威振, 方伟, 等. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016, 24(3):103-109.
[32] 李璐璐, 明博, 高尚, 等. 不同熟期玉米品种籽粒田间脱水特征差异性分析. 作物学报, 2023, 49(6):1643-1652.
[33] 范虹, 殷文, 柴强. 间作优势的光合生理机制及其冠层微环境特征. 中国生态农业学报(中英文), 2022, 30(11):1750- 1761.
[34] 陈艺博, 杨琴, 王晶晶, 等. 不同根构型玉米品种间作对根系分布、养分积累和产量的影响. 核农学报, 2023, 37(3):594-605.
[35] Zhao R L, Wang Y H, Yu X F, et al. Dynamics of maize grain weight and quality during field dehydration and delayed harvesting. Agriculture, 2023, 13(7):1357.
[36] Parvej M R, Hurburgh C R, Hanna H M, et al. Dynamics of corn dry matter content and grain quality after physiological maturity. Agronomy Journal, 2020, 112(2):998-1011.
[37] 李璐璐, 王克如, 谢瑞芝, 等. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11):2052-2060.
[1] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[2] Sun Yanjie, Wei Guocai, Wu Yuheng, Shi Yunqiang, Shao Yong, Liu Yingrui, Nan Yuantao, Zhang Weiyao. Genetic Diversity Analysis of 100 Maize Germplasm Resources by SNP Markers [J]. Crops, 2025, 41(2): 14-19.
[3] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[4] Chang Hongbing, Wang Chen, He Meijing, Cao Ximin, Yu Fengfang, Cao Xiaoliang, Song Wei, Lü Aizhi. Genetic Diversity Analysis of 69 Maize Germplasm Resources Based on SSR Markers [J]. Crops, 2025, 41(2): 47-53.
[5] Li Wenyue, Yu Tao, Cao Shiliang, Ma Xuena, Tang Gui, Gao Li, Yang Gengbin. Genetic Diversity Analysis of 96 Waxy Maize Inbred Lines Based on SNP Chip [J]. Crops, 2025, 41(2): 74-78.
[6] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[7] Zhou Miaomiao, He Ruitong, Li Lan, Wang Hongxin, Peng Haoyuan, Zhang Yubo, Zhang Dan, Wang Jinbin, Luo Xinning, Qi Bingqin. Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density [J]. Crops, 2025, 41(1): 162-169.
[8] Han Xue, Wang Ying, Han Dongyu, Zhao Xinyao, Li Xiaoting, Zhang Hongjie, Li Lijun. Effects of Nitrogen Application on Yield, Nitrogen Accumulation, and Interspecific Relationships of Oat Intercropped with Clover [J]. Crops, 2025, 41(1): 187-193.
[9] Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234.
[10] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[11] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[12] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[13] Han Xiaowei, Zhou Jiangming, Gao Yingbo, Tian Xuehui, Li Mingjun, Hao Yanjie, Li Wei, Li Shubing, Liu Shuze. Research on Refined Selection Method for Maize Seeds Based on Machine Vision Technology [J]. Crops, 2024, 40(6): 242-248.
[14] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[15] Yu Tao, Zhang Jianguo, Cao Jingsheng, Ma Xuena, He Chang’an, Cao Shiliang, Li Shujun, Cai Quan, Li Xin, Li Sinan, Yang Gengbin, Li Wenyue. Identification and Evaluation of Low Temperature Tolerance of 110 New Maize Materials at Germination Stage [J]. Crops, 2024, 40(5): 18-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .