Crops ›› 2017, Vol. 33 ›› Issue (3): 29-34.doi: 10.16035/j.issn.1001-7283.2017.03.006

Previous Articles     Next Articles

Study on Integration of QTL based on Meta-Analysis Related to Heading Date of Rice

Li Xiuping1,Ma Wendong2,Zhang Xianguo2,Miao Baigeng1,Li Jiamei1,Zhang Siqi1   

  1. 1 School of Life Sciences,Jiamusi University,Jiamusi 154007,Heilongjiang,China
    2 Jiamusi Rice Research Institute,Heilongjiang Academy of Agricultural Sciences,Jiamusi 154026,Heilongjiang,China
  • Received:2017-02-03 Revised:2017-04-10 Online:2017-06-15 Published:2018-08-26

Abstract:

Heading date was one of the important rice breeding objectives which determined the suitable planting area and planting season for rice varieties and led to a stable and high yield. A total of 207 QTLs information related to heading date of rice from 43 mapping populations were collected. These QTLs and their common markers were integrated with the reference map Cornell 2001 by BioMercator 2.1. The real QTLs were calculated by the method of meta-analysis. Moreover, a consensus map of rice QTL conferring heading date was constructed. In total 14 real QTLs and their linked markers were found from 1, 2, 4, 5, 6, 7, 8 and 10 chromosomes. This research offered a basis for fine mapping, map-based cloning and marker-assisted breeding of rice for heading date.

Key words: Rice, Heading date, QTL integration, Meta-analysis

Table 1

QTLs reported for heading date in rice"

序号
NO.
QTL数量
QTL number
群体类型
Population type
分析方法
Analysis method
参考文献
Reference
1 2 RIL IM [19]
2 3 RIL CIM [20]
3 7 F2 IM [21]
4 1 RTL CIM [22]
5 4 RIL CIM [23]
6 8 RIL IM [24]
7 1 DH IM [25]
8 10 DH IM [26]
9 10 RIL CIM [27]
10 8 BC3F2 CIM [28]
11 8 DH IM [29]
12 2 RIL MCIM [30]
13 1 BC1F2 IM [31]
14 1 RIL IM [32]
15 1 F2 IM [33]
16 3 BCF1 IM [34]
17 2 F2 IM [35]
18 4 BC2F5 CIM [36]
19 4 F2 CIM [37]
20 1 BC3F2 CIM [38]
21 3 F1 CIM [39]
22 5 RIL IM [40]
23 4 BC2F4 CIM,ICIM [41]
24 4 RIL CIM [42]
25 7 RIL CIM [43]
26 2 RIL CIM [44]
27 10 RIL CIM [45]
28 11 BC2 IM [46]
29 4 RIL CIM [47]
30 6 RIL CIM [48]
31 6 RIL CIM [49]
32 4 F2 CIM [50]
33 2 DH IM [51]
34 11 BC3F1 CIM [52]
35 2 BC4F2 CIM [53]
36 12 RIL CIM [54]
37 10 RIL MCIM [55]
38 1 F2 IM [56]
39 2 DH IM [57]
40 3 RIL IM [58]
41 5 RIL IM [59]
42 3 RIL CIM [60]
43 9 RIL CIM [61]

Fig.1

Consensus map of QTL of rice heading date on Cornell 2001"

Table 2

Meta-analysis results of rice heading date QTL"

染色体Chr. AIC值
AIC value
最大可能位置
Map position
置信区间Confidence interval 图距
Map distance
左标记
Left marker
坐标
Coordinate
右标记
Right marker
坐标
Coordinate
From To
1 56.44 25.98 24.32 27.63 3.31 RM6324 23.10 RG532 30.10
1 56.44 41.65 40.47 42.73 2.26 RM1195 39.50 RM5359 41.90
1 56.44 86.60 84.62 88.58 3.96 RM294A 83.90 RM294B 89.40
2 11.23 55.95 50.40 61.50 11.10 RM550 46.40 RM5812 61.40
4 5.44 10.65 9.34 11.96 2.62 RM307 9.50 RM5953 12.00
5 32.20 16.19 11.87 20.51 8.64 C5-1 11.90 RM1200 20.51
5 32.20 24.20 20.96 27.44 6.48 RM1200 20.51 RM582 27.40
5 32.20 57.11 47.18 67.05 19.87 RM509 47.20 RM430 67.00
6 144.96 11.20 10.35 12.04 1.69 RM584 110.20 RZ398 11.50
6 144.96 54.32 52.80 55.84 2.60 RM3724 54.70 RM539 56.40
6 144.96 75.71 73.86 77.56 3.70 RM3 74.70 RM2654 79.00
6 144.96 143.00 138.36 147.63 9.27 RM340 138.40 RM176 147.60
7 218.81 56.80 55.35 58.25 2.90 PK12-2 56.90 RM533 58.30
7 218.81 68.36 67.07 69.64 2.57 RG678 67.30 CX-1 69.00
7 218.81 82.28 81.13 83.44 2.31 RM500 81.10 RM11 83.40
7 218.81 113.48 113.22 113.75 0.53 RM248 113.00 RM3555 120.40
8 37.34 37.62 34.42 40.54 6.12 RM1376 34.40 RM5556 40.50
8 37.34 44.83 43.43 46.23 2.80 MRG7266 43.30 RM544 46.10
8 37.34 69.44 68.51 70.37 1.86 RM350 68.50 RM264 70.40
8 37.34 75.65 69.89 81.41 11.52 RM264 70.40 RM32 80.90
10 13.10 71.39 70.74 72.04 1.30 MRG4392 70.70 MRG5704 72.10
[1] 陈俊宇 . 水稻抽穗期和产量性状微效QTLqHd1的精细定位. 北京:中国农业科学院, 2016: 1-2.
[2] 刘爽 . 水稻抽穗期互作基因LH1、LH2的遗传分析及基因定位. 上海:复旦大学, 2012: 3-4.
[3] 李静 . 基于CSSL的水稻抽穗期和穗长QTL定位及遗传分析. 北京:中国农业科学院, 2016: 18-19.
[4] 王洪俊 . 水稻抽穗期相关QTL-dth12的精细定位. 南京:南京农业大学, 2010: 31-32.
[5] 叶红 . 水稻抽穗期和不育系柱头外露QTL的遗传定位. 武汉:华中农业大学, 2015: 21-22.
[6] 徐仅婷 . 水稻抽穗期QTL定位及回交转育培育抗病、虫水稻新品系. 广州:仲恺农业工程学院, 2014: 33-34.
[7] 李广贤 . 基于单片段代换系的水稻抽穗期QTL分析. 泰安:山东农业大学, 2014: 41-44.
[8] 吴斯骏 . 基于CSSL的水稻抽穗期QTL定位研究. 南昌:江西农业大学, 2013: 15-19.
[9] 李修平, 马文东, 王仲 , 等. 水稻直链淀粉含量QTL图谱整合研究.东北农业大学学报, 2014(3):8-14.
doi: 10.3969/j.issn.1005-9369.2014.03.002
[10] 刘秀林, 苗丽丽, 薛永国 , 等. 玉米磷素相关根系性状Meta-QTL及候选基因发掘.玉米科学, 2016(6):1-6.
[11] 王禹贺, 于立伟, 张林 . 玉米粒重一致性QTL整合图谱的构建及元分析.黑龙江农业科学, 2015(7):4-8.
[12] 王健维, 程宇坤, 叶雪玲 , 等. 小麦品质相关性状的一致性数量性状位点(MQTL)连锁图谱构建.农业生物技术学报, 2015(5):671-682.
doi: 10.3969/j.issn.1674-7968.2015.05.013
[13] 王晓丽, 翁建峰, 吕香玲 , 等. 玉米产量性状“一致性QTL“分析.分子植物育种, 2011(5):579-584.
doi: 10.3969/j.issn.1672-416X.2011.05.009
[14] 刘硕, 罗玲, 刘章雄 , 等. 大豆蛋白质含量QTL的“整合“及Overview分析.大豆科学, 2011(1):1-7,14.
[15] 常玮, 韩英鹏, 胡海波 , 等. 基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘. 中国农业科学, 2010,43(23):4787-4795.
doi: 10.3864/j.issn.0578-1752.2010.23.003
[16] 张丽伟, 齐照明, 刘春燕 , 等. 基于Meta分析的大豆倒伏性相关QTL的整合. 植物遗传资源学报, 2010,11(6):755-759.
[17] 鄂志国, 吴殿星, 庄杰云 , 等. 水稻千粒重QTL图谱整合研究.科技通报, 2008(5):617-622,635.
doi: 10.3969/j.issn.1001-7119.2008.05.006
[18] Darvasi A, Soller M . A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics, 2010,27:125-132.
doi: 10.1023/A:1025685324830 pmid: 9145551
[19] 祝莉莉, 谭光轩, 任翔 , 等. 5种重要农艺性状基因在水稻重组自交系群体中的定位. 武汉大学学报(理学版), 2013,49(6):787-792.
doi: 10.7666/d.y1394356
[20] 雷冬阳, 陈立云 . 水稻抽穗期QTL的检测及上位性和环境互作效应. 湖南农业大学学报(自然科学版), 2010,36(3):245-249.
doi: 10.3724/SP.J.1238.2010.00245
[21] 黄成, 姜树坤, 刘梦红 , 等. 水稻抽穗期的QTL剖析. 华北农学报, 2010,24(3):7-9.
[22] 贾小丽, 林文雄 . 水稻抽穗期基因定位及其环境互作研究. 中国农学通报, 2011,27(24):29-32.
[23] 郭晶心, 陈忠正, 刘耀光 , 等. 水稻抽穗期数量性状的基因定位及遗传效应分析. 分子植物育种, 2004,2(6):788-794.
[24] 陈燕华, 黄大辉, 邱永福 , 等. 水稻主要农艺性状的QTL分析. 华南农业大学学报, 2014,35(5):42-51.
doi: 10.7671/j.issn.1001-411X.2014.05.008
[25] 谭震波, 沈利爽, 况浩池 , 等. 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 2010,23(6):439-446.
[26] 李平, 陆朝福, 周开达 , 等. 利用RLFP标记定位水稻重要农艺性状的主效基因与微效基因. 中国科学, 2010,26(3):257-263.
[27] 冯跃, 翟荣荣, 曹立勇 , 等. 不同施氮水平下水稻株高与抽穗期的 QTL 比较分析. 作物学报, 2011,37(9):1525-1532.
doi: 10.3724/SP.J.1006.2011.01525
[28] 邱磊, 蒋海潮, 冯玉涛 , 等. 控制水稻抽穗期和株高的QTL的定位及遗传分析. 基因组学与应用生物学, 2014,33(4):828-835.
[29] 龚继明, 郑先武, 杜保兴 , 等. 控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究. 中国科学, 2010,30(6):561-569.
doi: 10.3321/j.issn:1006-9259.2000.06.001
[30] 占小登, 于萍, 林泽川 , 等. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL. 中国水稻科学, 2014,28(6):570-580.
doi: 10.3969/j.issn.10017216.2014.06.002
[31] 邢永忠, 徐才国, 华金平 , 等. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2011,43(7):721-726.
[32] Han Y P, Xing Y Z, Gu S L , et al. Effect of morphological traits on sheath blight resistance in rice. Acta Botanica Sinica, 2013,45(7):825-831.
doi: 10.1038/sj.onc.1206615
[33] 郑景生, 江良荣, 曾建敏 , 等. 应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL. 分子植物育种, 2013,1(5/6):633-639.
doi: 10.3969/j.issn.1672-416X.2003.05.007
[34] 朱虹霞 . 利用两个水稻回交群体构建图谱及7个农艺性状QTL分析. 合肥:安徽农业大学, 2009: 40-43.
doi: 10.7666/d.y1597509
[35] 陈恩会 . 两个新抗源中水稻纹枯病抗性和相关农艺性状的QTL定位. 扬州:扬州大学, 2010: 32-35.
doi: 10.7666/d.y626924
[36] 吴比 . 普通野生稻中增产效应QTL的发掘和以南洋占为受体亲本川7为供体亲本导入系的构建. 武汉:华中农业大学, 2011: 40-42.
doi: 10.7666/d.y2003874
[37] 侯磊磊 . 水稻分子遗传图谱构建及产量相关性状QTL定位分析. 新乡:河南师范大学, 2012: 37-38.
[38] 邵迪 . 水稻抽穗期QTLqHd3-1和粒重QTLGW3的遗传分析和定位. 武汉:华中农业大学, 2010: 28-29.
[39] 苏公车 . 水稻细胞质雄性不育系育性稳定性和柱头外露率遗传基础研究. 武汉:华中农业大学, 2009: 31-35.
doi: 10.7666/d.y1598334
[40] 袁爱平 . 水稻株高、抽穗期和有效穗数的QTL定位分析. 晋中:山西农业大学, 2010: 24-25.
[41] 董华林 . 野生稻染色体片段代换系的构建及其遗传效应研究. 武汉:华中农业大学, 2010: 30-37.
doi: 10.7666/d.y1597940
[42] 于国辉 . 水稻纹枯病抗性遗传分析. 武汉:华中农业大学, 2009: 40-45.
doi: 10.7666/d.y1598395
[43] 何云丽 . 水稻品种996耐热基因精细定位和抽穗期QTL分析. 长沙:湖南农业大学, 2013: 31-34.
[44] 刘毅 . 水稻纹枯病抗性遗传分析及稻种资源的抗病鉴定与评价. 武汉:华中农业大学, 2010: 30-36.
doi: 10.7666/d.y1799398
[45] 张振华 . 籼稻抽穗期和株高QTL初定位及qPH6.2的精细定位. 杭州:杭州师范大学, 2012: 28-29.
doi: 10.7666/d.y2132229
[46] Thomson M J, Tai T H , McClung A M,et al.Mapping quantitative trait loci for yield,yield components and morphological traits in an advanced backcross population between Oryza rufipogonand the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics, 2013,107:479-493.
[47] Mei H W, Li Z K, Shu Q Y , et al. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theoretical and Applied Genetics , 2011,110:649-659.
[48] Chen L N, Yang Y, Yan C Q , et al. Identification of quantitative trait loci for bacterial blight resistance derived from Oryza meyeriana and agronomic traits in recombinant inbred lines of Oryza sativa. Journal of Phytopathology, 2012,160:461-468.
doi: 10.1111/jph.2012.160.issue-9
[49] Cheng L R, Wang J M, Ye G Y , et al. Identification of stably expressed QTL for heading date using reciprocal introgression line and recombinant inbred line populations in rice. Genetics Research, 2012,94:245-253.
doi: 10.1017/S0016672312000444
[50] Zou H, Pan X B, Chen Z X , et al. Mapping quantitative trait loci controlling sheath blight resistancen two rice cultivars (Oryza sativa L.). Theoretical and Applied Genetics, 2010,101:569-573.
[51] 国广泰史, 钱前, 佐藤宏之 , 等. 水稻纹枯病抗性QTL分析. 遗传学报, 2002,29(1):50-55.
[52] 冯玉涛, 蒋海潮, 高冠军 , 等. 利用高世代回交群体定位水稻抽穗期和株高QTL. 分子植物育种, 2014,12(1):1-8.
[53] 陆广文 . 水稻感光基因dth2的精细定位及感温基因LTG1的图位克隆与功能分析. 南京:南京农业大学, 2010: 30-37.
doi: 10.7666/d.Y2360829
[54] 王会民 . 超级稻协优9308根系相关性状QTL的精细定位. 沈阳:沈阳农业大学, 2013: 79-80.
[55] 戴高兴 . 超级杂交稻协优9308重组自交系抽穗期QTL定位及其与产量性状关系的研究. 北京:中国农业科学院, 2012: 35-38.
[56] 张永生 . 水稻抽穗期及其对光温反应敏感性的QTL定位分析. 南京:南京农业大学, 2008: 56-60.
[57] 马良勇 . 水稻株高相关基因的遗传分析和QTL定位. 杭州:浙江大学, 2007: 117-119.
[58] 邢永忠 . 用分子标记剖析水稻重要农艺性状的遗传基础. 武汉:华中农业大学, 1999: 39-44.
doi: 10.7666/d.Y322475
[59] 曹立勇 . 水稻几个重要性状的QTL定位及抗白叶枯病基因分子标记辅助选择. 杭州:浙江大学, 2012: 64-65.
[60] 毛东海 . 水稻产量性状和黄化表型的遗传基础. 武汉:华中农业大学, 2010: 35-37
[61] 岳兵 . 水稻后期抗旱性遗传基础研究. 武汉:华中农业大学, 2005: 50-53.
doi: 10.7666/d.y1005061
[62] 赵冬生 . 水稻抽穗期基因的图位克隆与功能分析. 扬州:扬州大学, 2013: 23.
[63] 周勇, 崔国昆, 张言周 , 等. 水稻抽穗期主效QTL qHd8.1的精细定位.中国水稻科学, 2012(1):43-48.
[1] Ji Shengdong, Li Peng, Li Jiangwei, Song Liumin, . Analysis of Peroxidase Zymogram and Genetic#br# Effects between Rice Lines and Their#br# Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli, Zheng Yun, Zhou Xiaomei, . Genetic Diversity Analysis of Red Rice from#br# Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[4] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[5] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[6] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[7] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[8] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[9] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[10] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[11] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[12] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
[13] Zhibo Zhou,Yake Yi,Guanghui Chen. Effects of Sowing Amount, Medium and Chemical Treatment on Seedling Quality and Yield of High Quality Late-Rice Variety of Yuzhenxiang [J]. Crops, 2018, 34(2): 129-135.
[14] Ge Qu,Zhengguang Chen,Xue Wang. Identification of Rice Varieties Using NIR Spectroscopy and SIMCA, PLS-DA Methods [J]. Crops, 2018, 34(2): 166-170.
[15] Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .