Crops ›› 2019, Vol. 35 ›› Issue (5): 28-36.doi: 10.16035/j.issn.1001-7283.2019.05.005

Previous Articles     Next Articles

The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels

Shi Zhaokang1,2,Zhao Zequn1,2,Zhang Yuanhang1,2,Xu Shiying1,2,Wang Ning1,2,Wang Weijie1,2,Cheng Hao1,2,Xing Guofang1,2,Feng Wanjun1,2   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 Institute of Agricultural Bioengineer, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2019-05-09 Revised:2019-06-05 Online:2019-10-15 Published:2019-11-07
  • Contact: Guofang Xing,Wanjun Feng

Abstract:

In order to investigate the effects of low nitrogen stress on the biomass and root morphology of seedling of maize inbred lines seeding, 14 days after treatment with two nitrogen levels, the dry weight per plant, shoot dry weight, root dry weight, root-shoot ratio, total root length, root surface area, root volume, root average diameter, lateral root number and primary root length of 35 pieces of classical maize inbred lines were assessed. The results showed that Under low nitrogen stress, root dry weight, root-shoot ratio, root surface area, root volume, lateral root number, root average diameter and primary root length of maize seedlings increased significantly, shoot dry weight and dry weight per plant reduced significantly, while the total root length did not change significantly. Principal component analysis and cluster analysis showed that there were genotypic differences in the traits of maize seedlings under the same nitrogen level, and they could be divided into 6 groups under normal nitrogen and low nitrogen condition. Under low nitrogen treatment, the nitrogen accumulation in shoot of 9 inbred lines were significantly reduced in comparison with normal nitrogen level. The nitrogen accumulation in roots of PH4CV, B73 and XY4 increased significantly, while the other 6 lines decreased significantly. In addition, only XY4 had a high nitrogen absorption and utilization efficiency. The comprehensive analysis showed that XY4 was a low-nitrogen high efficiency maize inbred line.

Key words: Maize, Nitrogen, Biomass accumulation, Root morphology, Principal components analysis, Cluster analysis

Table 1

Seedling biomass and root traits among different maize inbred lines at two nitrogen application levels"

性状
Trait
处理
Treatment
性状表现Performances of traits F
均值
Mean
最大值
Max
最小值
Min
变异系数(%)
CV
低氮效应(%)
Low nitrogen effect
基因型
Genotype
氮素
Nitrogen
基因型×氮素
Genotype×Nitrogen
总根长(cm/株) NN 199.71 615.60 61.31 54.61 1.86 167.06** 3.69ns 104.95**
Total root length (cm/plant) (TRL)
LN 203.43 331.26 76.36 37.89
根表面积(cm2/株) NN 17.58 48.92 6.30 48.51 8.63 76.97** 38.20** 48.53**
Root surface area (cm2/plant) (RSA) LN 19.10 35.78 8.01 40.43
根平均直径 NN 0.30 0.37 0.23 12.54 2.69 51.99** 20.35** 30.99**
Root average diameter (mm) (RAD)
LN 0.31 0.44 0.21 16.24
根体积(cm3/株) NN 0.13 0.31 0.05 44.17 12.98 29.56** 29.08** 14.26**
Root volume (cm3/plant) (RV) LN 0.15 0.32 0.06 47.88
侧根数(个/株) NN 360.19 1 035.40 126.80 49.79 15.35 115.50** 147.76** 49.16**
Lateral root number (No./plant) (LRN) LN 415.47 776.40 212.40 39.88
初生根长(cm/株) NN 28.19 40.16 19.88 19.82 25.62 32.56** 479.50** 17.24**
Primary root length (cm/plant) (PRL) LN 35.42 49.92 17.80 22.52
地上部干重(mg/株) NN 119.88 202.80 60.74 33.24 -20.73 42.69** 217.92** 7.73**
Shoot dry weight (mg/plant) (SDW) LN 95.03 175.16 51.08 31.79
根干重(mg/株) NN 17.30 33.56 8.00 39.39 90.25 28.12** 798.92** 8.35**
Root dry weight (mg/plant) (RDW) LN 32.91 59.02 7.34 36.99
单株干重(mg/株) NN 137.57 236.36 69.34 32.76 -6.79 55.14** 26.85** 9.36**
Dry weight per plant (mg/plant) (PDW) LN 128.22 235.38 63.14 31.58
根冠比Root-shoot ratio (R/S) NN 0.146 0.268 0.091 23.03 136.69 21.67** 2 793.48** 12.52**
LN 0.345 0.584 0.131 24.89

Table 2

Correlative analysis of ten traits at seedling stage among different maize inbred lines at two nitrogen application levels"

LN条件下性状
Trait under LN condition
NN条件下性状Trait under NN condition
SDW RDW PDW R/S PRL TRL RSA RAD RV LRN
SDW -0.82** -0.99** -0.04 -0.42* -0.70** -0.74** -0.29 0.75** 0.43**
RDW -0.79** -0.89** -0.50** -0.46** -0.70** -0.76** -0.33* 0.79** 0.44**
PDW -1.00** -0.85** -0.09 -0.45** -0.71** -0.76** -0.31 0.78** 0.43**
R/S -0.02 -0.57** -0.07 -0.12 -0.14 -0.18 -0.11 0.21 0.14
PRL -0.15 -0.13 -0.14 -0 -0.28 -0.41* -0.41* 0.50** 0.09
TRL -0.07 -0.43** -0.12 -0.65** -0.01 -0.92** -0.06 0.79** 0.76**
RSA -0.07 -0.43** -0.12 -0.64** -0.06 -0.98** -0.27 0.95** 0.74**
RAD -0 -0.16 -0.03 -0.26 -0.22 -0.44** -0.26 0.52** 0.03
RV -0.15 -0.48** -0.20 -0.59** -0.16 -0.85** -0.94** -0.02 0.64**
LRN -0.12 -0.47** -0.18 -0.66** -0.04 -0.91** -0.90** -0.37* 0.82**

Fig.1

Principal components analysis of maize seedling biomass and root traits at two nitrogen application levels A, B represent the projection of the 10 traits in the principal component 1 and the principal component 2, and in the principal component 2 and the principal component 3 under NN condition, C, D represent the projection of the 10 traits in the principal component 1 and the principal component 2, and in the principal component 2 and the principal component 3 under LN condition, respectively. The dots indicate the position of 35 maize inbred lines, and the lines represent vectors that quantify the magnitude and direction of a trait′s contribution to the principal component. PRL, RAD, LRN, SDW, PDW, RSA, RV, RDW, TRL and R/S indicate primary root length, root average diameter, lateral root number, shoot dry weight, dry weight per plant, root surface area, root volume, root dry weight, total root length and root-shoot ratio, respectively. The same below"

Fig.2

Clustering analysis of 35 maize inbred lines based on different traits at two nitrogen application levels"

Fig.3

Clusters of 35 maize inbred lines and the variations analysis between different traits based on LN condition A means clustering of 35 maize inbred lines based on LN effect of different traits; B means change patterns of ten traits in the different groups under NN and LN levels in the legend, 1, 2, 3, 4 and 5 represent different groups; Significant difference between two nitrogen treatments is indicated by "*" (P<0.05); Significant difference between groups in nitrogen level is indicated by different small letters (P<0.05)"

Table 3

Nitrogen accumulations and nitrogen physiological efficiencies of nine maize inbred lines"

自交系
Intred line
氮素处理
Nitrogen
treatment
地上部氮素积累量(mg/株)
Shoot N accumulation
amount (mg/plant)
根系氮素积累量(mg/株)
Root N accumulation
amount (mg/plant)
单株氮素积累量(mg)
N accumulation
amount per plant
氮素生理利用效率(%)
Physiological use
efficiency of N
Chang7-2 NN -02.680a -00.385a -03.065a 057.140b
LN -00.607b -00.129b -00.736b 131.820a
变化Change (%) -77.4 -66.5 -76.0 130.7
Zong3 NN -04.588a -00.337a -04.925a 048.030b
LN -00.900b -00.268b -01.167b 122.170a
变化Change (%) -80.4 -20.5 -76.3 154.3
PH6WC NN -02.261a -00.198a -02.460a 043.670b
LN -00.427b -00.114b -00.540b 131.640a
变化Change (%) -81.1 -42.7 -78.0 201.5
87-1 NN -01.872a -00.281a -02.153a 058.330b
LN -00.505b -00.103b -00.608b 182.130a
变化Change (%) -73.0 -63.3 -71.7 212.2
Mo17 NN -01.577a -00.168a -01.745a 055.900b
LN -00.429b -00.136b -00.565b 158.530a
变化Change (%) -72.8 -19.0 -67.6 183.6
B73 NN -02.417a -00.147b -02.565a 040.810b
LN -01.073b -00.210a -01.283b 077.930a
变化Change (%) -55.6 -42.7 -50.0 091.0
XY4 NN -03.179a -00.250b -03.429a 055.090b
LN -01.061b -00.291a -01.351b 149.190a
变化Change (%) -66.6 -16.3 -60.6 170.8
PH4CV NN -01.067a -00.138b -01.206a 062.180b
LN -00.695b -00.223a -00.918b 101.500a
变化Change (%) -34.9 -61.4 -23.8 063.2
Zheng58 NN -01.236a -00.191a -01.427a 057.140b
LN -00.619b -00.166b -00.785b 147.730a
变化Change (%) -49.9 -13.0 -45.0 158.5
[1] Lynch J P . Steep,cheap and deep:an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
[2] Mi G H, Chen F J, Wu Q P , et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 2010,53(12):1369-1373.
[3] Zhang X, Davidson E A, Mauzerall D L , et al. Managing nitrogen for sustainable development. Nature, 2015,528:51-59.
[4] Guo J H, Liu X J, Zhang Y , et al. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
[5] Mueller N D, Gerber J S, Johnston M , et al. Closing yield gaps through nutrient and water management. Nature, 2012,490:254-257.
[6] Steffen W, Richardson K, Rockström J , et al. Planetary boundaries:Guiding human development on a changing planet. Science, 2015,347(6223):1259855.
[7] Tegeder M, Masclaux-Daubresse C . Source and sink mechanisms of nitrogen transport and use. New Phytologist, 2018,217(1):35-53.
[8] 裴雪霞, 王姣爱, 党建友 , 等. 耐低氮小麦基因型筛选指标的研究. 小麦研究, 2007(2):1-6.
[9] 张楚, 张永清, 路之娟 , 等. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017,43(8):1205-1215.
[10] Saiz-Fernández I, De Diego N, Sampedro M C , et al. High nitrate supply reduces growth in maize,from cell to whole plant. Journal of Plant Physiology, 2015,173:120-129.
[11] 春亮 . 玉米氮高效品种选育及根系形态对低氮反应的遗传分析. 北京:中国农业大学, 2004.
[12] 李丹丹, 宗俊勤, 陈静波 , 等. 耐低氮假俭草种质筛选. 草业科学, 2018,35(10):2463-2470.
[13] 邱双, 闫双堆, 刘利军 . 不同谷子品种耐低磷能力研究. 作物杂志, 2017(2):139-144.
[14] 张鹏飞, 张翼飞, 王玉凤 , 等. 膜下滴灌氮肥分期追施量对玉米氮效率及土壤氮素平衡的影响. 植物营养与肥料学报, 2018,24(4):915-926.
[15] 王泽林, 白炬, 李阳 , 等. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019,25(1):74-84.
[16] 王艳, 米国华, 陈范骏 , 等. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003,23(2):297-302.
[17] Gao K, Chen F, Yuan L , et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant,Cell and Environment, 2015,38(4):740-750.
[18] 冯万军, 张义荣, 姚颖垠 , 等. 玉米杂交种与亲本苗期根系蛋白差异表达谱分析. 自然科学进展, 2009,19(6):619-627.
[19] 薛玲珠, 孙敏, 高志强 , 等. 深松蓄水增量播种对旱地小麦植株氮素吸收利用、产量及蛋白质含量的影响. 中国农业科学, 2017,50(13):2451-2462.
doi: 10.3864/j.issn.0578-1752.2017.13.005
[20] Chen C J, Chen H, He Y H , et al. TBtools,a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018: 289660.
[21] Chun L, Mi G, Li J , et al. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant and Soil, 2005,276(1/2):369-382.
[22] Hardtke C S . Root development-branching into novel spheres. Current Opinion in Plant Biology, 2006,9(1):66-71.
[23] Abdel-Ghani A H, Kumar B, Reyes-Matamoros J , et al. Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L. ) inbred lines grown under contrasting nitrogen levels. Euphytica, 2013,189(1):123-133.
[24] Garnett T, Conn V, Kaiser B N . Root based approaches to improving nitrogen use efficiency in plants. Plant,Cell and Environment, 2009,32(9):1272-1283.
[25] Linkohr B I, Williamson L C, Fitter A H , et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002,29(6):751-760.
[26] Zhan A, Lynch J P . Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 2015,66(7):2055-2065.
[27] Liu J, Li J, Chen F , et al. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L. ). Plant and Soil, 2008,305(1/2):253-265.
[28] Guo H, York L M . Reallocation to lateral and early-emerging axial roots allows maize (Zea mays L. ) with reduced nodal root number to more efficiently forage for nitrate. BioRxiv, 2019:533042.
[29] 李强, 罗延宏, 谭杰 , 等. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014,22(10):1190-1199.
[30] 刘宗华, 卫晓轶, 汤继华 , 等. 低氮胁迫对不同基因型玉米根部性状的影响. 玉米科学, 2008(5):50-53,57.
[31] 刘宗华, 卫晓轶, 胡彦民 , 等. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010,18(5):53-59.
[32] Xu G, Fan X, Miller A J . Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63:153-182.
[33] 姜琳琳, 韩立思, 韩晓日 , 等. 氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响. 植物营养与肥料学报, 2011,17(1):247-253.
doi: 10.11674/zwyf.2011.0134
[34] 姜琪, 陈志伟, 刘成洪 , 等. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究. 华北农学报, 2019,34(1):148-155.
[1] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province [J]. Crops, 2019, 35(5): 104-108.
[2] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize [J]. Crops, 2019, 35(5): 173-179.
[3] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2019, 35(5): 135-142.
[4] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[5] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties [J]. Crops, 2019, 35(5): 151-158.
[6] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province [J]. Crops, 2019, 35(5): 159-165.
[7] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene [J]. Crops, 2019, 35(5): 37-40.
[8] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize [J]. Crops, 2019, 35(5): 46-51.
[9] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[10] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[11] Cui Yuefeng,Sun Guocai,Lu Tiegang,Wang Guiyan,Wang Jian,Huang Wenjia,Luan Helin. Effects of Different Straw Return Modes on Nitrogen Absorption and Utilization of Super Rice in Northern China [J]. Crops, 2019, 35(4): 164-169.
[12] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[13] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[14] Wang Nan,Li Mu,Lu Ming,Gao Tingting,Zheng Shubo,Zhang Zhijun,Liu Wenguo. Application Analysis of Pioneer USA Maize Varieties in China [J]. Crops, 2019, 35(4): 24-29.
[15] Guo Hongliang,Liu Yongzhong,Chang Haixia,Jin Kunpeng,Li Wanxing,Cao Jinjun,Li Dan,Li Xiaoxia. Multiple Analysis of Ear Characters and Grain Water Content in Maize Harvest Period in Middle-Late-Maturing Regions of Shanxi Province [J]. Crops, 2019, 35(4): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[9] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .