Crops ›› 2019, Vol. 35 ›› Issue (6): 1-7.doi: 10.16035/j.issn.1001-7283.2019.06.001

    Next Articles

Advances in the Research on Potato Continuous Cropping Obstacles

Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2019-05-05 Revised:2019-07-05 Online:2019-12-15 Published:2019-12-11
  • Contact: Xingyao Xiong

Abstract:

Potato is one of the four major food crops in the world. In China, due to the large-scale successive planting, the continuous cropping obstacles on potatoes are serious which lead to a series of problems such as yield and quality reduction. Continuous cropping obstacle is the result of interaction between soil and crops. This paper reviews the main causes of potato continuous cropping obstacles and the main methods to control potato continous cropping obstacles. The research progress of potato continuous cropping mechanism is introduced from the aspects of contiuous physical and chemical deterioration of potato soil, allelopathic self-toxicity and soil microbial community structure change. The prevention and control of potato continuous cropping soil, allelopathy and autotoxicity rhizosphere, microorganisms change and methods to overcome potato continuous cropping obstacles were also introduced. This paper aims at laying the foundation for studying the mechanism and establishing technology to overcome the continuous cropping obstacles.

Key words: Potato, Continuous cropping obstacle, Soil physical and chemical properties, Rhizosphere microorganism

Fig.1

Diagram of potato continuous cropping obstacles"

[1] Qin S, Yeboah S, Xu X X , et al. Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Frontiers in Microbiology, 2017,8:845.
doi: 10.3389/fmicb.2017.00845 pmid: 28539923
[2] Ma K, Zhang L, Du Q , et al. Effect of potato continuous cropping on soil microorganism community structure and function. Soil Water Conserve, 2010,24(4):229-233.
[3] Liu X, Qiu H Z, Zhang W M , et al. Sink-source relationship of potato plants and its role involved in the reduction of tuber yield in continuous cropping system. Chinese Journal of Applied Ecology, 2017,28(5):1571-1582.
doi: 10.13287/j.1001-9332.201705.019 pmid: 29745194
[4] Liu W X, Wang Q L, Wang B Z , et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil, 2015,395(1/2):415-427.
doi: 10.1007/s11104-015-2569-3
[5] Jouquet P, Chintakunta S, Bottinelli N , et al. The influence of fungus-growing termites on soil macro and micro-aggregates stability varies with soil type. Applied Soil Ecology, 2016,101:117-123.
doi: 10.1016/j.apsoil.2016.02.001
[6] Kong F L, Chen F, Zhang H L , et al. Effects of rotational tillage on soil physical properties and winter wheat yield. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(8):150-155.
[7] 胡宇, 郭天文, 张绪成 . 旱地马铃薯连作对土壤养分的影响. 安徽农业科学, 2009,37(12):5436-5439.
[8] 孙权, 陈茹 . 宁南黄土丘陵区马铃薯连作土壤养分、酶活性和微生物区系的演变. 水土保持学报, 2010,24(6):208-212.
[9] Acosta-Martínez V, Zobeck T M, Allen V . Soil microbial,chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Science Society of America Journal, 2004,68(6):1875-1884.
doi: 10.2136/sssaj2004.1875
[10] Li T Z, Liu T T, Zheng C Y , et al. Changes in soil bacterial community structure as a result of incorporation of brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS ONE, 2017,12(3):e0173923.
doi: 10.1371/journal.pone.0173923 pmid: 28346463
[11] Acosta-Martinez V, Burow G, Zobeck T M , et al. Soil microbial communities and function in alternative systems to continuous cotton. Soil Science Society of America Journal, 2010,74(4):1181-1192.
doi: 10.2136/sssaj2008.0065
[12] 刘来, 孙锦, 邦世荣 . 大棚辣椒连作土壤养分和离子变化与酸化的关系. 中国农学通报, 2013,29(16):100-105.
[13] 贡璐, 冉启洋, 韩丽 . 塔里木河上游典型绿洲连作棉田土壤酶活性与其理化性质的相关性分析. 水土保持通报, 2012,3(4):36-42.
[14] 马海燕, 徐瑾, 郑成淑 , 等. 非洲菊连作对土壤理化性状与生物性状的影响. 中国农业科学, 2011,44(18):3733-3740.
doi: 10.3864/j.issn.0578-1752.2011.18.004
[15] Zhou X G, Wu F Z . Dynamics of the diversity of fungal and fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiology Ecology, 2012,80(2):469-478.
doi: 10.1111/j.1574-6941.2012.01312.x
[16] Maltais-Landry G . Legumes have a greater effect on rhizosphere properties (pH,organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant and Soil, 2015,394(1/2):139-154.
doi: 10.1007/s11104-015-2518-1
[17] Qiu Y, Wang Y J, Xie Z K , et al. Temporal effects of gravel-sand mulching on soil microbial populations and soil enzyme activity in croplands with continuous cultivation. Bulletin of Soil and Water Conservation, 2011,31(5):65-68.
[18] Rasool N, Reshi Z A, Shah M A . Effect of butachlor (G) on soil enzyme activity. European Journal of Soil Biology, 2014,61:94-100.
doi: 10.1016/j.ejsobi.2014.02.002
[19] Trasar-Cepeda C, Leirós M C, Seoane S , et al. Biochemical properties of soils under crop rotation. Applied Soil Ecology, 2008,39(2):133-143.
doi: 10.1371/journal.pone.0223026 pmid: 31568535
[20] Gonnety J T, Assémien E F L, Guéi A M ,et al. Effect of land-use types on soil enzymatic activities and chemical properties in semi-deciduous forest areas of Central-West Côte d’Ivoire. Biotechnology. Agronomy, Society and Environment, 2012,16(4):478-485.
[21] Wang H W, Wang X X, Lü L X , et al. Effects of applying endophytic fungi on the soil biological characteristics and enzyme activities under continuously cropped peanut. The Journal of Applied Ecology, 2012,23(10):2693-2700.
pmid: 23359928
[22] Grün A L, Straskraba S, Schulz S , et al. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass,enzyme activity,and functional genes involved in the nitrogen cycle of loamy soil. Journal of Environmental Sciences, 2018,69:12-22.
doi: 10.1016/j.jes.2018.04.013 pmid: 29941247
[23] 胡元森, 吴坤, 李翠香 . 酚酸物质对黄瓜幼苗及枯萎病菌菌丝生长的影响. 生态学报, 2007,26(11):1738-1742.
[24] 张婷玉, 林多, 杨延杰 . 辣椒根系分泌物的收集方法研究. 北方园艺,2014(12):14-17.
[25] 尹琪淋, 谢越 . 酚酸类物质导致植物连作障碍的研究进展. 安徽农业科学, 2011,39(34):20977-20978,20985.
[26] Louws F J, Rivard C L, Kubota C . Grafting fruiting vegetables to manage soilborne pathogens,foliar pathogens,arthropods and weeds. Scientia Horticulturae, 2010,127(2):127-146.
doi: 10.1016/j.scienta.2010.09.023
[27] Wang C M, Li T C, Jan Y L , et al. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of rhododendron formosanum. PLoS ONE, 2013,8(12):e85162.
doi: 10.1371/journal.pone.0085162 pmid: 24391991
[28] 沈宝云, 李朝周, 余斌 , 等. 甘肃沿黄灌区连作马铃薯根区土壤有机物GC-MS分析. 干旱地区农业研究, 2016,34(3):1-7.
[29] 杨桂丽, 马琨, 卢斐 , 等. 马铃薯连作栽培对土壤化感物质及微生物群落的影响. 生态与农村环境学报, 2015,31(5):711-717.
[30] 张文明, 邱慧珍, 刘星 , 等. 连作对马铃薯根系形态及吸收能力的影响. 干旱地区农业研究, 2014,32(1):34-37,46.
[31] Arafat Y, Wei X Y, Jiang Y H , et al. Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. International Journal of Molecular Sciences, 2017,18(8):1727.
doi: 10.3390/ijms18081727 pmid: 28786955
[32] He J Z, Zheng Y, Chen C R , et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments, 2008,8(5):349-358.
doi: 10.1007/s11368-008-0025-1
[33] Berendsen R L, Pieterse M J, Bakker P A H M . The rhizosphere microbiome and plant health. Trends in Plant Science, 2012,17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001
[34] Prashar P, Kapoor N, Sachdeva S . Biocontrol of plant pathogens using plant growth promoting bacteria. Sustainable Agriculture Reviews, 2013,12:319-360.
doi: 10.1094/PHYTO-10-19-0383-R pmid: 31799901
[35] Hu H Q, Li X S, Hong H . Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt. Biological Control, 2010,54(3):359-365.
doi: 10.1016/j.biocontrol.2010.06.015
[36] Glaring M A, Vester J K, Lylloff J E , et al. Microbial diversity in a permanently cold and alkaline environment in greenland. PLoS ONE, 2015,10(4):e0124863.
doi: 10.1371/journal.pone.0124863 pmid: 25915866
[37] Atkinson D, Thornton M K, Miller J S . Development of Rhizoctonia solani on stems,stolons and tubers of potatoes Ⅰ. Effect of inoculum source. American Journal of Potato Research, 2010,87(4):374-381.
doi: 10.1007/s12230-010-9143-6
[38] 谭雪莲, 郭天文, 刘高远 . 马铃薯连作土壤微生物特性与土传病原菌的相互关系. 灌溉排水学报, 2016,35(8):30-35.
[39] Mendes R, Garbeva P, Raaijmakers J M . The rhizosphere microbiome:significance of plant beneficial,plant pathogenic,and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013,37(5):634-663.
doi: 10.1111/1574-6976.12028
[40] Qin S, Yeboah S, Cao L , et al. Breaking continuous potato cropping with legumes improves soil microbial communities,enzyme activities and tuber yield. PLoS ONE, 2017,12(5):e0175934.
doi: 10.1371/journal.pone.0175934 pmid: 28463981
[41] Tan Y, Cui Y, Li H , et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiological Research, 2017,194:10-19.
doi: 10.1016/j.micres.2016.09.009 pmid: 27938858
[42] Li Y C, Li Z, Li Z W , et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L. ) continuous cropping soil by high-throughput pyrosequencing approach. Journal of Applied Microbiology, 2016,121(3):787-799.
doi: 10.1111/jam.13225 pmid: 27377624
[43] Franche C, Lindström K, Elmerich C . Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 2009,321(1):35-59.
doi: 10.1264/jsme2.ME19030 pmid: 31611488
[44] Xiong W, Zhao Q Y, Zhao J , et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015,70(1):209-218.
doi: 10.1007/s00248-014-0516-0 pmid: 25391237
[45] İnceoğlu Ö, Al-Soud W A, Salles J F ,et al. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE, 2011,6(8):e23321.
doi: 10.1371/journal.pone.0023321 pmid: 21886785
[46] Yousuf B, Keshri J, Mishra A , et al. Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene, 2012,506(1):18-24.
doi: 10.1016/j.gene.2012.06.083
[47] Shen Z, Zhong S, Wang Y , et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European Journal of Soil Biology, 2013,57(4):1-8.
doi: 10.1016/j.ejsobi.2013.03.006
[48] Edwards J, Johnson C, Santos-Medellín C , et al. Structure,variation,and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8):E911-E920.
[49] Klironomos J N . Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 2002,417(6884):67-70.
doi: 10.1038/417067a pmid: 11986666
[50] Harrison K. A, Bardgett R D . Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 2010,98(2), 384-395.
doi: 10.1111/jec.2010.98.issue-2
[51] Neupane S, Goyer C, Zebarth B J , et al. Soil bacterial communities exhibit systematic spatial variation with landform across a commercial potato field. Geoderma, 2019,335:112-122.
doi: 10.1016/j.geoderma.2018.08.016
[52] Yu L H, Wu S J, Peng Y S , et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal, 2016,14(1):72-84.
doi: 10.1111/pbi.12358 pmid: 25879154
[53] Shen Z, Ruan Y, Chao X , et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils, 2015,51(5):553-562.
doi: 10.1007/s00374-015-1002-7
[54] Liu X, Zhang S, Jiang Q , et al. Using community analysis to explore bacterial indica-tors for disease suppression of tobacco bacterial wilt. Scientific Reports, 2016,6:36773.
doi: 10.1038/srep36773 pmid: 27857159
[55] Zhao S, Liu D, Ling N , et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 2014,50(5):765-774.
doi: 10.1007/s00374-014-0898-7
[56] Qiu M H, Zhang R F, Xue C , et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology and Fertility of Soils, 2012,48(7), 807-816.
doi: 10.1007/s00374-012-0675-4
[57] Bending G D, Turner M K, Rayns F , et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry, 2004,36(11):1785-1792.
doi: 10.1016/j.soilbio.2004.04.035
[58] Moulin A P, Buckley K E, Volkmar K . Soil quality as affected by amendments in bean-potato rotations. Canadian Journal of Soil Science, 2011,91(4):533-542.
doi: 10.4141/CJSS10011
[59] 秦舒浩, 曹莉, 张俊莲 , 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响. 作物学报, 2014,40(8):1452-1458.
doi: 10.3724/SP.J.1006.2014.01452
[60] 王丽红, 郭晓冬, 谭雪莲 . 不同轮作方式对马铃薯土壤酶活性及微生物数量的影响. 干旱地区农业研究, 2016,34(5):109-113.
[61] 徐雪风, 李朝周, 张俊莲 . 轮作油葵对马铃薯生长发育及抗性生理指标的影响. 土壤, 2017,49(1):83-89.
[62] Li S, Wu F . Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018,9:1521.
doi: 10.3389/fmicb.2018.01521 pmid: 30034385
[63] 李越, 曹瑾, 汪春明 . 蚕豆间作栽培对连作马铃薯根际土壤微生物的影响. 农业科学研究, 2017,38(2):8-13.
[64] 王娜, 陆姗姗, 马琨 , 等. 宁夏南部山区马铃薯不同间作模式对根际土壤细菌多样性的影响. 干旱区资源与环境, 2016,30(12):193-198.
[65] 何进勤, 冯付军, 吴晓彦 . 间套作模式对宁南山区马铃薯农艺性状的影响. 宁夏农林科技, 2015,56(3):1-3,7.
[66] González-Chávez M C A, Aitkenhead-Peterson J A, Gentry T J , et al. Soil microbial community,C,N,and P responses to long term tillage and crop rotation. Soil and Tillage Research, 2010,106(2), 285-293.
doi: 10.1016/j.still.2009.11.008
[67] Ling N, Zhang W, Tan S , et al. Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp. niveum and its antagonistic bacterium in the rhizosphere of watermelon. Applied Soil Ecology, 2012,59(4):13-19.
doi: 10.1016/j.apsoil.2012.05.001
[68] 宋尚成, 朱凤霞, 刘润进 . 秸秆生物反应堆对西瓜连作土壤微生物数量和土壤酶活性的影响. 微生物学通报, 2010,37(5):696-700.
[69] 赵丽婷, 刘玉环, 秦超 , 等. 酵母生物肥对土壤理化性质和马铃薯经济效益的影响. 蔬菜,2015(10):34-38.
[70] 沈宝云, 余斌, 王文 , 等. 腐植酸铵、有机肥、微生物肥配施在克服甘肃干旱地区马铃薯连作障碍上的应用研究. 中国土壤与肥料,2011(2):68-70.
[71] 罗飞, 赵汉雨, 刘存祥 , 等. 几种常见土壤杀菌方法述评. 安徽农学通报, 2010, 16(9): 50, 120.
[72] 杨桂丽, 童娟, 张丽 . 熏蒸灭菌对连作马铃薯生长发育及土壤微生物的影响. 农业科学研究, 2012,33(1):36-40,56.
[73] 郭成瑾, 张丽荣, 沈瑞清 . 土壤消毒对马铃薯连作田土壤微生物数量的影响. 江苏农业科学, 2014,42(14):368-370.
[1] Chen Yang,Qin Yonglin,Yu Jing,Jia Liguo,Fan Mingshou. Basis and Measures for Reducing Nitrogen Fertilizer on Irrigated Potato in Inner Mongolia [J]. Crops, 2019, 35(6): 90-93.
[2] Guo Jinting,Teng Yue,Gao Yuliang,Zhang Yan,Li Kuihua. Effects of Different Light Quality on Characteristics of Sessile-Tuberization and Photosynthetic Performance with Single Node Stems in Potato [J]. Crops, 2019, 35(6): 120-126.
[3] Zhang Congying,Jiang Jizhi,Liang Jiao,Qiao Liu,Huang Jie. Identification of Bacterium HT-6 and Its Antagonistic Stability against Phytophthora infestans [J]. Crops, 2019, 35(6): 162-167.
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[5] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland [J]. Crops, 2019, 35(5): 120-124.
[6] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[7] Liang Junmei,Zhang Jun,An Hao,Jing Yupeng,Li Huanchun,Duan Yu. Effects of Recommended Fertilization by Management Nutrition Expert System on Potato Yield and Fertilizer Use Efficiency [J]. Crops, 2019, 35(4): 133-138.
[8] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[9] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[10] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[11] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[12] Zhiyong Hao,Guangdong Yang,Guangwei Qiu,Zunyan Hu,Lichun Wang,Haiyan Wang. Screening of High Carotenoid Resources in Potato [J]. Crops, 2019, 35(2): 71-77.
[13] Hong Zhang,Shiying Zheng,Shuxia Liang,Guangfeng Chen,Mingyou Wang. Research Progress in Breeding Special Potatoes with High Starch Content [J]. Crops, 2019, 35(1): 9-14.
[14] Wang Weiwei, Wang Hongyang, Liu Jing, Liang Jingsi, Li Canhui, Tang Wei. Quantitative Trait Loci (QTL) Mapping and Three Resistance Traits Linkage Markers Selection in Potatoes [J]. Crops, 2018, 34(6): 10-16.
[15] Su Feifei,Zhang Jinghua,Li Yong,Liu Shangwu,Liu Zhenyu,Wang Shaopeng,Wan Shuming,Chen Xi,Gao Yunfei,Hu Linshuang,Dianqiu Lü. Effects of Different Irrigation Methods on Physiological Characteristics and Water Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[5] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[6] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[7] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[8] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[9] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .