Crops ›› 2018, Vol. 34 ›› Issue (6): 10-16.doi: 10.16035/j.issn.1001-7283.2018.06.002

Previous Articles     Next Articles

Quantitative Trait Loci (QTL) Mapping and Three Resistance Traits Linkage Markers Selection in Potatoes

Wang Weiwei,Wang Hongyang,Liu Jing,Liang Jingsi,Li Canhui,Tang Wei   

  1. Joint Academy of Potato Science, Yunnan Normal University, Kunming 650500, Yunnan, China
  • Received:2018-05-27 Revised:2018-08-19 Online:2018-12-15 Published:2018-12-06

Abstract:

Potato is one of the main food crops in China, and research on potato molecular breeding research is of great significance. In the diploid potato, QTL mapping and cloning of important genes has been reported extensively; The development of tetraploid linked analysis software, genetic map construction in tetraploid potato and QTL mapping have also made breakthrough progress in recent years. Meanwhile, molecular markers are an important supplement method for potato breeding and it can quickly and accurately screen out multiple good traits. In this paper, the progress of the QTL mapping, cloning of important agronomic traits in potato and 3 resistance traits linkage markers breeding were summarized, to provid a reference and practical basis for accelerating potato molecular breeding.

Key words: Potato, QTL, Molecular marker, Breeding

Table 1

Major resistance gene linkage markers to potato late blight"

基因
Gene
染色体
Chromosome
来源Origin 标记类型
Marker type
RB[37] 8 S. tuberosum×S. bulbocastanum PCR
Rpi-smiral[39] 11 S. tuberosum PCR
R1[40] 5 S. tuberosum AFLP
R2[41] 4 S. tuberosum PCR
R2[42] 4 S. tuberosum AFLP
R3[35] 11 S. tuberosum RFLP
R6, R7[36] 11 S. tuberosum RFLP
Rpi-ber[43] 10 S. berthaultii ESTs
R11[38] 11 S. tuberosum PCR
Rpi-blb1[44] 8 S. bulbocastanum PCR

Table 2

Resistance gene linkage markers to potato virus"

病毒Virus 抗性基因Resistance gene 来源Origin 染色体Chromosome 标记Mark
PVY Ryadg[48] S. andigena 11 RYSC3/SCAR
PVY Ryadg[48] S. andigena 11 RYSC4/SCAR
PVY Ryadg[49] S. andigena 11 ADG2/CAPs
PVY Ryadg[50] S. andigena 11 PYSC3/PCR based
PVY Rysto[51] S. stoloniferum 12 YES3-3A/STS
PVY Rysto[51] S. stoloniferum 12 YES3-3B/STS
PVY Rysto[51] S. stoloniferum 12 SCARYSTO4/PCR based
PVY Ry-fsto[52] S. stoloniferum 12 GP122718/CAPs
PVY Ry-fsto[53] S. stoloniferum 12 GP122564/CAPs
PVY Rychc[41] S. chacoense 9 Ry186/STS
PVY Rychc[54] S. chacoense 9 38-530/RAPD
PVY Nytbr (HR)[55] S. tuberosum 4 TG506/ RFLP
PVY Ny-1[56] S. tuberosum 9 Sldl1/CAPs
PVY Ny-1[57] S. tuberosum 9 SC8951139/PCR based
PVY Ny-2 (HR)[57] S. tuberosum 11 B11.6/CAPs
PLRV PLRV.1[58] S. chacoense 11 Nl271164/SCAR
PLRV PLRV.2[58] S. chacoense 4 GP76/SCAR
PLRV PLRV.3[58] S. chacoense 5 HM4-26/SCAR
PLRV PLRV.4[59] S. andigena 11 UB864600/SCAR
PLRV Rlretb[60] S. tuberosum 4、9 DMB32-11/CAPs
PLRV Rlretb[60] S. tuberosum 4、9 1367-8a/CAPs
PLRV Rlretb[60] S. tuberosum 4、9 C2-Atlg42990/CAPs
PLRV Rladg[61] S. andigena 5 E35M48.192/AFLP
PLRV Rladg[62] S. andigena 5 RGASC850/SCAR
PVA Naadg (HR)[63] S. andigena 11 GP21/AFLP
PVS Ns (HR)[53] S. andigena 8 SC811-260/CAPs
PVS Ns[64] S. tuberosum 8 CP16/CAPs
PVM Rm[65] S. megistacrolobum 11 GP283-320/CAPs
PVM Rm[65] S. megistacrolobum 11 GP250-510/CAPs
PVM Gm[65] S. gourlayi 9 SC878885/SCAR
PVX Rx[66] S. tuberosum 12 GP34/CAPs
PVX Rx1[67] S. andigena 12 RxSP/STS
PVX Rx1[68] S. andigena 12 CP60/RFLP
PVX Rx2[69] S. acaule 5 GP21/RFLP
PVX Nbtbr (HR)[63] S. tuberosum 5 CT167/RFLP
PVX Nb (HR)[63] S. tuberosum 5 SPUD237/CAPs
PVX Nxphu (HR)[70] S. tuberosum 9 TG424/RELP
[1] Ames M, Spooner D M . DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany, 2008,95(2):252-257.
doi: 10.3732/ajb.95.2.252 pmid: 21632349
[2] 谷茂, 信乃俭 . 我国栽培马铃薯最早引进时间的辨析. 中国农史, 1999(3):80-85.
[3] Graham T, Guy H, Enrique C , et al. Varietal change in potatoes in developing countries and the contribution of the International Potato Center:1972-2007. International Potato Center (CIP), Social Sciences Working Paper, 2008.
[4] Xu X, Pan S, Cheng S , et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475(7355):189-195.
doi: 10.1038/nature10158 pmid: 21743474
[5] Meyer R C, Milbourne D, Hackett C A , et al. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Molecular and General Genetics, 1998,259(2):150-160.
doi: 10.1007/s004380050800 pmid: 9747706
[6] 时启冬 . 四倍体马铃薯SSR遗传图谱的构建及若干性状的QTL定位分析. 哈尔滨:东北农业大学, 2014.
[7] Luo Z W, Hackett C A, Bradshaw J E , et al. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001,157(3):1369-1385.
doi: 10.1089/109065701750168806 pmid: 11238421
[8] Hackett C A, Luo Z W . Tetraploidmap:construction of a linkage map in autotetraploid species. Journal of Heredity, 2003,94(4):358-359.
doi: 10.1093/jhered/esg066 pmid: 12920109
[9] Bourke P M, Voorrips R E, Visser R G , et al. The double-reduction landscape in tetraploid potato as revealed by a high-density linkage map. Genetics, 2015,201(3):853-863.
doi: 10.1534/genetics.115.181008
[10] Hackett C A, Milne I, Bradshaw J E , et al. Tetraploid Map for Windows:linkage map construction and QTL mapping in autotetraploid species. Journal of Heredity, 2007,98(7):727-729.
doi: 10.1093/jhered/esm086 pmid: 17965198
[11] 周俊 . 马铃薯(Solanum tuberosum L.)试管块茎形成的QTL定位及遗传分析. 武汉:华中农业大学, 2014.
[12] Massa A N, Manrique-Carpintero N C, Coombs J J ,et al. Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.). G3 (Bethesda), 2015,5(11):2357-2364.
doi: 10.1534/g3.115.019646 pmid: 4632055
[13] 崔阔澍, 于肖夏, 于卓 , 等. 四倍体彩色马铃薯花青素含量及产量性状的QTL定位. 草业学报, 2016,25(5):116-124.
doi: 10.11686/cyxb2015369
[14] 刘龙超, 周云, 贺苗苗 , 等. 四倍体马铃薯SSR遗传图谱的构建及晚疫病抗性QTL初步定位. 植物病理学报, 2016,46(1):84-90.
doi: 10.13926/j.cnki.apps.2016.01.010
[15] Felcher K J, Coombs J J, Massa A N , et al. Integration of two diploid potato linkage maps with the potato genome sequence. PLoS ONE, 2012,7(4):e36347.
doi: 10.1371/journal.pone.0036347 pmid: 22558443
[16] Bonierbale M W, Plaisted R L, Tanksley S D . RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988,120(4):1095-1103.
pmid: 17246486
[17] Gebhardt C, Ritter E, Debener T , et al. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical & Applied Genetics, 1989,78(1):65-75.
doi: 10.1007/BF00299755 pmid: 24227032
[18] Van Eck H J, Van der Voort J R, Draaistra J , et al. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Molecular Breeding, 1995,1(4):397-410.
doi: 10.1007/BF01248417
[19] 金黎平, 刘杰, 方智远 . 二倍体马铃薯分子连锁图谱的构建. 园艺学报, 2007,4(2):397-402.
doi: 10.3321/j.issn:0513-353X.2007.02.025
[20] Visker M, Keizer L, Eck H V , et al. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type?. Theoretical & Applied Genetics, 2003,106(2):317-325.
doi: 10.1007/s00122-002-1021-2 pmid: 12582858
[21] Danan S, Chauvin J E, Caromel B , et al. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theoretical & Applied Genetics, 2009,119(4):705-719.
doi: 10.1007/s00122-009-1081-7 pmid: 19533081
[22] 单友蛟, 刘杰, 卞春松 , 等. 马铃薯SSR遗传连锁图谱构建及3个重要农艺性状QTLs定位. 中国蔬菜, 2010,1(18):10-14.
[23] Mihovilovich E, Munive S, Bonierbale M . Influence of day-length and isolates of Phytophthora infestans on field resistance to late blight of potato. Theoretical & Applied Genetics, 2010,120(6):1265-1278.
doi: 10.1007/s00122-009-1254-4 pmid: 20063145
[24] 李竟才 . 二倍体马铃薯遗传图谱构建及晚疫病抗性QTL定位. 武汉:华中农业大学, 2012.
doi: 10.7666/d.Y2162708
[25] 李梦台 . 二倍体马铃薯遗传图谱构建及薯形QTL分析. 武汉:华中农业大学, 2015.
doi: 10.7666/d.Y2803558
[26] Schäfer-Pregl R, Ritter E, Hesselbach J , et al. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theoretical & Applied Genetics, 1998,97(5/6):834-846.
doi: 10.1007/s001220050963
[27] Jung C S, Griffiths H M, De Jong D M , et al. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical & Applied Genetics, 2005,110(2):269-275.
doi: 10.1007/s00122-005-1987-7 pmid: 15565378
[28] De Jong W S, Eannetta N T, De Jong D M , et al. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical & Applied Genetics, 2004,108(3):423-432.
doi: 10.1007/s00122-003-1455-1 pmid: 14523517
[29] 肖继坪, 王琼, 郭华春 . 彩色马铃薯二氢黄酮醇4-还原酶(DFR)基因的克隆及生物信息学分析. 分子植物育种, 2011,9(6):728-735.
[30] 肖继坪, 李俊, 郭华春 . 彩色马铃薯类黄酮-3-O-葡萄糖基转移酶基因(3GT)的生物信息学和表达分析. 分子植物育种, 2015,13(5):1017-1026.
[31] 杨艳丽 . 云南马铃薯产业技术与经济研究. 北京: 科学出版社, 2016.
[32] Ramakrishnan A P, Ritland C E, Blas Sevillano R H , et al. Review of potato molecular markers to enhance trait selection. American Journal of Potato Research, 2015,92(4):455-472.
doi: 10.1007/s12230-015-9455-7
[33] Fry W . Phytophthora infestans:the plant (and R gene) destroyer. Molecular Plant Pathology, 2008,9(3):385-402.
doi: 10.1111/j.1364-3703.2007.00465.x pmid: 18705878
[34] Flor H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9(1):275-296.
doi: 10.1146/annurev.py.09.090171.001423
[35] EI-Kharbotly A, Leonards-Schippers C, Huigen D J , et al. Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of dihaploid potato parents. Molecular and General Genetics, 1994,242(6):749-754.
doi: 10.1007/BF00283432 pmid: 7908718
[36] EI-Kharbotly A, Jacobs J M E, te Hekkert B T , et al. Localization of Ds-transposon containing T-DNA inserts in the diploid transgenic potato:linkage to the R1 resistance gene against Phytophthora infestans (Mont.) de Bary. Genome, 1996,39(2):249-257.
doi: 10.1139/g96-034
[37] Colton L M, Groza H I, Wielgus S M , et al. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene derived from a wild potato species. Crop Science, 2006,46(2):589-594.
doi: 10.2135/cropsci2005.0112
[38] 徐建飞, 黄三文, 金黎平 , 等. 马铃薯晚疫病抗性基因R11的遗传定位. 作物学报, 2009,35(6):992-997.
doi: 10.3724/SP.J.1006.2009.00992
[39] Tomczyńska I, Stefańczyk E, Chmielarz M , et al. A locus conferring effective late blight resistance in potato cultivar Sárpo Mira maps to chromosome Ⅺ. Theoretical & Applied Genetics, 2014,127(3):647-657.
doi: 10.1007/s00122-013-2248-9 pmid: 3931936
[40] Kuhl J C, Bradeen J M, Kole C. Genetics,Genomics and Breeding of Sunflower. Boca Raton: CRC Press,USA, 2010: 111-113.
[41] Mori K, Sakamoto Y, Mukojima N , et al. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011,180(3):347-355.
doi: 10.1007/s10681-011-0381-6
[42] Li X, van Eck H J, Rouppe J , et al. Autotetraploids and genetic mapping using common AFLP markers:the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theoretical & Applied Genetics, 1998,96(8):1121-1128.
doi: 10.1007/s001220050847
[43] Rauscher G M, Smart C D, Simko I M , et al. Characterization and mapping of Rpi-ber,a novel potato late blight resistance gene from Solanum berthaultii. Theoretical & Applied Genetics, 2006,112(4):674-687.
doi: 10.1007/s00122-005-0171-4 pmid: 16402191
[44] Wang M, Allefs S, van den Berg R G , et al. Allele mining in Solanum:conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical & Applied Genetics, 2008,116(7):933-943.
doi: 10.1007/s00122-008-0725-3 pmid: 18274723
[45] Rouppe van der Voort J N A M, Janssen G J W, Overmars H , et al. Development of a PCR-based selection assay for root-knot nematode resistance (Rmc1) by a comparative analysis of the Solanum bulbocastanum and S. tuberosum genome. Euphytica, 1999,106(2):187-195.
doi: 10.1023/A:1003587807399
[46] Zhang L H, Mojtahedi H, Kuang H , et al. Marker-assisted selection of Columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Science, 2007,47(5):2021-2026.
doi: 10.2135/cropsci2007.01.0003
[47] Brunt A A . The main viruses infecting potato crops// Loebenstein G,Berger P H,Brunt A A,et al. Virus and Virus-Like Diseases of Potatoes and Production of Seed-Potatoes, 2001: 65-67.
[48] Kasai K, Morikawa Y, Sorri V A , et al. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000,43(1):1-8.
doi: 10.1139/g99-092 pmid: 10701106
[49] Ottoman R, Hane D, Brown C , et al. Validation and implementation of marker-assisted selection(MAS)for PVY resistance in a tetraploid potato breeding program. American Journal of Potato Research, 2009,86(4):304-314.
doi: 10.1007/s12230-009-9084-0
[50] Lopez-Pardo R, Barandalla L, Ritter E , et al. Validation of molecular markers for pathogen resistance in potato. Plant Breeding, 2013,132:246-251.
doi: 10.1111/pbr.12062
[51] Song Y S, Schwarzfischer A . Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research, 2008,85(2):392-393.
doi: 10.1007/s12230-008-9012-8
[52] Flis B, Hennig J, Marczewski W , et al. The Ry-fsto gene from Solanum stoloniferum for extreme resistant to potato virus Y maps to potato chromosome Ⅻ and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding, 2005,15(1):95-101.
doi: 10.1007/s11032-004-2736-3
[53] Witek K, Strzelczyk-Zyta D, Hennig J , et al. A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-fsto and Ns. Molecular Breeding, 2006,18(3):273-275.
doi: 10.1007/s11032-006-9021-6
[54] Hosaka K, Hosaka Y, Mori M , et al. Detection of a simplex RAPD marker linked to resistance to potato virus Y in a tetraploid potato. American Journal of Potato Research, 2001,78(3):191-196.
doi: 10.1007/BF02883544
[55] Celebi-Toprak F, Slack S A, Jahn M M . A new gene,Nytbr,for hypersensitivity to potato virus Y from Solanum tuberosum maps to chromosome Ⅳ. Theoretical & Applied Genetics, 2002,104(4):669-674.
doi: 10.1007/s001220100749 pmid: 12582672
[56] Szajko K, Strzelczyk-Zyta D, Marczewsli W . Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes:mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014,34(1):267-271.
doi: 10.1007/s11032-014-0024-4 pmid: 4030098
[57] Szajko K, Chrzanowska M, Witek K , et al. The novel gene Ny-1 on potato chromosome Ⅸ confers hypersensitive resistance to potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theoretical & Applied Genetics, 2008,116(2):297-303.
[58] Burkhart C R, Christ B J, Haynes K G . Non-additive genetic variance governs resistance to Fusarium dry rot in a diploid hybrid potato population. American Journal of Potato Research, 2007,84(3):199-204.
doi: 10.1007/BF02986269
[59] Marczewski W, Flis B, Syller J , et al. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical & Applied Genetics, 2004,109(8):1604-1609.
doi: 10.1007/s00122-004-1780-z pmid: 15448896
[60] Kuhl J C, Novy R G, Jonathan L W , et al. Development of molecular markers closely linked to the potato leafroll virus resistance gene,Rlretb,for use in marker-assisted selection. American Journal of Potato Research, 2016,93(3):203-212.
doi: 10.1007/s12230-016-9496-6
[61] Velásquez A C, Mihovilvich E, Bonierbale M . Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical & Applied Genetics, 2007,114(6):1051-1058.
doi: 10.1007/s00122-006-0498-5 pmid: 17394033
[62] Mihovilovich E, Aponte M, Lindqvist-Kreuze H , et al. An RGA-derived SCAR marker linked to PLRV resistance from Solanum tuberosum ssp. andigena. Plant Molecular Biology Reporter, 2014,32(1):117-128.
doi: 10.1007/s11105-013-0629-5
[63] Jong W D, Forsyth A, Leister D , et al. A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical & Applied Genetics, 1997,95(1/2):246-252.
doi: 10.1007/s001220050555
[64] Marczewski W, Hennig J, Gebhardt C . The potato virus S resistance gene Ns maps to potato chromosome Ⅷ. Theoretical & Applied Genetics, 2002,105(4):564-567.
doi: 10.1007/s00122-002-0976-3 pmid: 12582505
[65] Marczewski W, Strzelczyk-Żyta D, Hennig J , et al. Potato chromosomes Ⅸ and Ⅺ carry genes for resistance to potato virus M. Theoretical & Applied Genetics, 2006,112(7):1232-1238.
doi: 10.1007/s00122-006-0224-3 pmid: 16453130
[66] Bebdahmane A, Kanyuka K, Baulcombe D C . High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theoretical & Applied Genetics, 1997,95(1/2):153-162.
doi: 10.1007/s001220050543
[67] Wastie R L, Bradshaw J E , Mackay. Inheritance of resistance to fungal diseases of tubers. Wallingford:CAB International, 1994.
[68] Gebhardt C, Bellin D, Henselewski H , et al. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical & Applied Genetics, 2006,112(8):1458-1464.
doi: 10.1007/s00122-006-0248-8 pmid: 16538512
[69] Ritter E, Debener T, Barone A , et al. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular and General Genetics, 1991,227(1):81-85.
doi: 10.1007/BF00260710 pmid: 1675423
[70] Tommiska J T, Watanabe N K, Valkonen T J P ,et al. Mapping of the gene Nxphu that controls hypersensitive resistance to potato virus X in Solanum phureja IVP35. Theoretical & Applied Genetics, 1998,96(6):840-843.
doi: 10.1007/s001220050810
[71] Lossl A, Adler N, Horn R , et al. Chondriome-type characterization of potato:Mt α,β,γ,ε and novel plastid-mitochondrial configurations in somatic hybrids. Theoretical & Applied Genetics, 1999,99(1/2):1-10.
doi: 10.1007/s001220051202
[72] Sanetomo R, Hosaka K . A maternally inherited DNA marker,descended from Solanum demissum (2n=6x=72) to S. tuberosum (2n=4x=48). Breeding Science, 2011,61(4):426-434.
doi: 10.1270/jsbbs.61.426 pmid: 3406774
[73] Powell W, Baird E, Duncan N , et al. Chloroplast DNA variability in old and recently introduced potato cultivars. Annals of Applied Biology, 1993,123(2):403-410.
doi: 10.1111/j.1744-7348.1993.tb04102.x
[74] Hosaka K, Sanetomo R . Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theoretical & Applied Genetics, 2012,125(6):1237-1251.
doi: 10.1007/s00122-012-1909-4 pmid: 22696007
[75] Provan J, Powell W, Dewar H , et al. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proceedings. Biological Sciences, 1999,266(1419):633-639.
doi: 10.1098/rspb.1999.0683 pmid: 1689813
[76] Sukhotu T, Kamijima O, Hosaka K . Genetic diversity of the Andean tetraploid cultivated potato (Solanum tuberosum L. subsp. andigena Hawkes) evaluated by chloroplast and nuclear DNA markers. Genome, 2005,48(1):55-64.
doi: 10.1139/g04-086
[77] 易靖 . 马铃薯品种资源分子标记检测及其与重要生物学性状的关联分析. 昆明:云南师范大学, 2016.
[1] Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong. QTL Mapping for Photosynthesis Related Traits in Upland Cotton [J]. Crops, 2018, 34(5): 85-90.
[2] Su Feifei,Zhang Jinghua,Li Yong,Liu Shangwu,Liu Zhenyu,Wang Shaopeng,Wan Shuming,Chen Xi,Gao Yunfei,Hu Linshuang,Dianqiu Lü. Effects of Different Irrigation Methods on Physiological Characteristics and Water Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
[3] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot [J]. Crops, 2018, 34(4): 154-160.
[4] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[5] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin [J]. Crops, 2018, 34(4): 8-12.
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
[7] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[8] Yiran Ye, ,Bencai Sha,Wenxiang Wang,Hongda Ye,Shixian Geng,Jingjin Cheng,Meirong Hai. Effects of Different Fertilizers on Photosynthetic Characteristics of Winter Potato [J]. Crops, 2018, 34(3): 135-140.
[9] Jiangchun Song,Shuanzhu Li,Jianyu Wang,Xiuge Zhang,Xuefeng Zhu,Jianli Qiao,Zhen Xiang. Advances in Breeding of High Oil Peanut in China [J]. Crops, 2018, 34(3): 25-31.
[10] Junchan Wang,Zhifu Gao,Dongsheng Li,Dongmei Zhu,Hongya Wu. The Application of Agricultural Information Technology in Wheat Breeding [J]. Crops, 2018, 34(3): 37-43.
[11] Shumin Liang,Ying Wang,Zhechao Pan,Lei Zhang,Ningsheng Xu,Yanshan Li,Qiongfen Yang,Xianping Li,Jianming ai,Chunguang Yao,Lili Lu,Qijun Sui. Effects of Soil Moisture and Temperature with Different Cultivation Methods on the Yield and Tuberization of Potato [J]. Crops, 2018, 34(3): 90-96.
[12] Xiaohua Shi,Haiying Yang,Wenqin Kang,Yonglin Qin,Mingshou Fan,Liguo Jia. Effects of Nitrogen Fertilization on Crop Yields and Soil Nitrogen Balance in Potato-Wheat System [J]. Crops, 2018, 34(2): 108-116.
[13] Yong Cui. Influence of Continuous Cropping and Controlling Measures on Continuous Cropping Potato [J]. Crops, 2018, 34(2): 87-92.
[14] Mingming Yan,Qiujun Chen,Min Tang,Zhiwen Liu. Effects of Different Concentration Combinations of Hormone and Organics on Rapid Propagation of Sweet Potato Virus-Free Seedling [J]. Crops, 2018, 34(2): 68-72.
[15] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines [J]. Crops, 2018, 34(1): 41-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .