Crops ›› 2019, Vol. 35 ›› Issue (6): 120-126.doi: 10.16035/j.issn.1001-7283.2019.06.019

Previous Articles     Next Articles

Effects of Different Light Quality on Characteristics of Sessile-Tuberization and Photosynthetic Performance with Single Node Stems in Potato

Guo Jinting1,Teng Yue1,Gao Yuliang2,Zhang Yan3,Li Kuihua1   

  1. 1Agricultural College of Yanbian University, Yanji 133002, Jilin, China
    2Yanbian Academy of Agricultural Sciences,Longjing 133400, Jilin, China
    3Bureau of Agricultural and Rural Affairs of Jilin, Jilin 132000, Jilin, China
  • Received:2019-06-06 Revised:2019-07-14 Online:2019-12-15 Published:2019-12-11
  • Contact: Kuihua Li

Abstract:

The stem segments of single leaf in Yanshu No.4 were transferred into white light, red light, blue light and red-blue light (4:1). The potato-bearing characteristics, the contents of sucrose and starch, and photosynthetic characteristics of axillary bud potato were determined. The results showed that, for the blue light treatment compared with the other light group, the initiation time of tuber formation was earlier, the average weight of tuber was the highest, and the contents of dry matter and sucrose reached the maximum. Of all the treatments, the contents of chlorophyll a and chlorophyll b, net photosynthetic rate (Pn), actual quantum yield (YPSⅡ), electron transport rate (ETR), photochemical quenching coefficient (qP) were the greatest in leaves under the blue light treatment. Under the red light treatment, transpiration rate (Tr), intercellular CO2 concentration (Ci) and stomatal conductance (Gs) were significantly higher than those of other treatments. There was no significance in the photochemical efficiency (Fv/Fm) among all of different light treatments at same culture time. Therefore, blue light is the most suitable artificial light source for inducing potato sessile-tuber formation.

Key words: Potato, Single node stem, Axillary bud potato, Light quality, Photosynthetic characteristics

Table 1

Characteristics of potato sessile tuberization under the different light quality treatments"

光质
Light quality
结薯始期(d)
Initial days of tuber induction
平均薯重(g)
Average tuber weight
结薯率(%)
Percent tuberization
红光Red light 5.37±0.45ab 0.148±0.01c 61.2±1.86d
蓝光Blue light 3.50±0.30c 0.383±0.02a 93.3±2.72a
红蓝光Red-blue light 4.90±0.20b 0.247±0.03b 75.0±2.23b
白光White light 5.77±0.35a 0.237±0.02b 70.6±2.49c

Table 2

Dynamic changes of photosynthetic pigment content in potato single-node stem under the different light quality treatments"

扦插后培养天数
Days after cutting (d)
光质
Light quality
叶绿素a (mg/gFM)
Chlorophyll a
叶绿素b (mg/gFM)
Chlorophyll b
叶绿素a/b
Chlorophyll a/b
类胡萝卜素(mg/gFM)
Carotenoid
1 红光Red light 2.001±0.086c 0.754±0.009c 2.655±0.084a 0.261±0.002b
蓝光Blue light 2.335±0.049a 0.911±0.016a 2.566±0.020a 0.278±0.009a
红蓝光Red-blue light 2.176±0.032b 0.838±0.012b 2.596±0.075a 0.268±0.007ab
白光White light 2.161±0.050b 0.853±0.024b 2.534±0.101a 0.266±0.001b
3 红光Red light 1.969±0.121b 0.725±0.009c 2.715±0.138a 0.259±0.006b
蓝光Blue light 2.242±0.048a 0.879±0.018a 2.634±0.071a 0.291±0.009a
红蓝光Red-blue light 1.993±0.080b 0.752±0.011c 2.652±0.134a 0.277±0.015ab
白光White light 2.086±0.062ab 0.796±0.011b 2.623±0.108a 0.256±0.014b
4 红光Red light 1.944±0.157b 0.729±0.012c 2.666±0.197a 0.271±0.004b
蓝光Blue light 2.271±0.109a 0.846±0.012a 2.685±0.161a 0.289±0.006a
红蓝光Red-blue light 1.907±0.079b 0.743±0.009c 2.567±0.086a 0.269±0.007b
白光White light 2.101±0.059ab 0.799±0.007b 2.629±0.097a 0.253±0.011c
5 红光Red light 1.739±0.090b 0.687±0.011c 2.503±0.100a 0.271±0.007a
蓝光Blue light 2.028±0.111a 0.768±0.006a 2.597±0.073a 0.284±0.009a
红蓝光Red-blue light 1.725±0.055b 0.713±0.016b 2.512±0.113a 0.266±0.006a
白光White light 1.799±0.086ab 0.750±0.003a 2.446±0.045a 0.269±0.015a
10 红光Red light 1.702±0.065b 0.633±0.011c 2.592±0.071a 0.271±0.016a
蓝光Blue light 1.955±0.057a 0.755±0.011a 2.591±0.105a 0.285±0.008a
红蓝光Red-blue light 1.663±0.082b 0.668±0.014b 2.494±0.176a 0.262±0.017a
白光White light 1.837±0.071a 0.713±0.004b 2.576±0.086a 0.267±0.009a

Table 3

Changes of photosynthetic parameter in potato single-node stem under the different light quality treatments"

扦插天数Days after cutting (d) 光质 Light quality Pn[μmol/(m·s)] Tr[mmol/(mol·s)] Ci (μmol/mol) Gs[mmol/(m2·s)]
1 红光Red light -1.002±0.095a 0.257±0.021a 518.501±9.226b 10.777±0.484a
蓝光Blue light -0.721±0.021a 0.137±0.012c 491.233±4.598c 06.223±0.179d
红蓝光Red-blue light -1.087±0.105a 0.161±0.011c 506.367±4.474b 08.651±0.187b
白光White light -0.851±0.031a 0.202±0.013b 497.567±5.129bc 07.517±0.161c
3 红光Red light -1.342±0.091d 0.233±0.006a 454.253±11.541a 12.353±0.880a
蓝光Blue light -0.501±0.031a 0.147±0.006c 357.813±3.179d 08.033±0.192d
红蓝光Red-blue light -1.181±0.056c 0.173±0.015b 419.693±7.207b 10.453±0.330b
白光White light -0.779±0.057b 0.223±0.015a 399.297±9.152c 09.487±0.292c
4 红光Red light -0.051±0.004d 0.250±0.017a 399.733±4.043a 11.101±0.794a
蓝光Blue light -0.627±0.068a 0.150±0.010b 280.617±1.530d 06.491±0.226d
红蓝光Red-blue light -0.243±0.041c 0.177±0.006b 376.867±10.735b 09.463±0.295b
白光White light -0.353±0.012b 0.241±0.020a 318.860±4.855c 08.293±0.203c
5 红光Red light -0.707±0.076c 0.357±0.032a 323.017±9.147a 17.741±0.118a
蓝光Blue light -1.696±0.077a 0.313±0.015a 219.677±8.074d 14.457±0.201c
红蓝光Red-blue light -1.370±0.035b 0.330±0.010a 295.333±7.234b 17.393±1.026ab
白光White light -1.581±0.054a 0.340±0.036a 275.025±5.001c 15.811±1.484bc
10 红光Red light -0.493±0.035b 0.147±0.012b 529.117±4.664a 10.643±0.405a
蓝光Blue light -1.341±0.013a 0.113±0.006c 336.627±6.916d 05.491±0.052d
红蓝光Red-blue light -0.643±0.293b 0.173±0.015b 487.407±3.137b 08.551±0.633b
白光White light -1.097±0.062a 0.225±0.027a 449.313±14.351c 07.490±0.205c

Table 4

Changes of chlorophyll fluorescence parameters in potato single-node stem under the different light quality treatments μmol/mol"

扦插天数Days after cutting (d) 光质Light quality Fv/Fm YPSⅡ ETR qP
1 红光Red light 0.789±0.003a 0.046±0.003a 16.567±0.351c 0.045±0.005c
蓝光Blue light 0.779±0.002a 0.051±0.003a 26.201±1.253a 0.103±0.012a
红蓝光Red-blue light 0.785±0.005a 0.045±0.005a 22.733±0.851b 0.075±0.003b
白光White light 0.779±0.008a 0.035±0.004b 24.001±0.265b 0.071±0.003b
3 红光Red light 0.787±0.006a 0.035±0.005c 12.833±0.737d 0.055±0.005d
蓝光Blue light 0.780±0.020a 0.058±0.003a 26.933±0.702a 0.106±0.005a
红蓝光Red-blue light 0.775±0.009a 0.035±0.005c 18.533±0.569c 0.068±0.003c
白光White light 0.777±0.006a 0.052±0.002b 23.767±0.723b 0.084±0.004b
4 红光Red light 0.774±0.023a 0.187±0.006c 14.433±0.208d 0.352±0.008d
蓝光Blue light 0.782±0.008a 0.351±0.031a 23.933±0.288a 0.551±0.019a
红蓝光Red-blue light 0.773±0.011a 0.183±0.012c 16.233±1.059c 0.436±0.002c
白光White light 0.781±0.011a 0.284±0.011b 21.201±1.201b 0.491±0.005b
5 红光Red light 0.787±0.002a 0.196±0.005c 17.333±0.551c 0.316±0.006c
蓝光Blue light 0.777±0.003a 0.306±0.004a 23.267±1.011a 0.453±0.016a
红蓝光Red-blue light 0.777±0.003a 0.203±0.006c 21.201±1.389b 0.401±0.010b
白光White light 0.776±0.004a 0.252±0.003b 22.433±0.208ab 0.417±0.011b
10 红光Red light 0.790±0.004a 0.167±0.002c 13.967±0.832c 0.248±0.022c
蓝光Blue light 0.773±0.006a 0.251±0.008a 22.567±1.059a 0.438±0.005a
红蓝光Red-blue light 0.781±0.018a 0.165±0.007c 17.733±1.258b 0.362±0.014b
白光White light 0.779±0.004a 0.222±0.015b 20.933±0.681a 0.418±0.006a

Fig.1

Effects of sucrose and dry matter content in potato single-node stem under the different light quality treatments"

[1] 高荣孚, 张鸿明 . 植物光调控的研究进展. 北京林业大学学报, 2002,24(5/6):235-243.
[2] 姜丽丽, 孟佳美, 杨丹婷 , 等. LED光源不同光质对马铃薯试管苗生长的影响. 中国马铃薯, 2018,32(5):266-271.
[3] 唐道彬, 张晓勇, 王季春 , 等. 不同光质对水培脱毒马铃薯光合与结薯特性的影响. 园艺学报, 2017,44(4):691-702.
[4] Fixen K R, Thomas S C, Tong C B S . Blue light inhibition of tuberization in a day-neutral potato. Journal of Plant Growth Regulation, 2012,31(3):342-350.
doi: 10.1007/s00344-011-9242-8
[5] Janet E A Seabrook . Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro:A review. American Journal of Potato Research, 2005,82(5):353-367.
doi: 10.1007/BF02871966
[6] Muleo R, Morini S, Casano S . Photo regulation of growth and branching of plum shoots physiological action of two photosystems. In Vitro Cellular and Development Biology Plant, 2001,37(5):609-617.
doi: 10.1007/s11627-001-0107-x
[7] Aksenova N P, Konstantinova T N, Sergeeva L I , et al. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. Journal of Plant Growth Regulation, 1994,13(3):143-146.
doi: 10.1007/BF00196378
[8] 常宏, 王玉萍, 王蒂 , 等. 光质对马铃薯试管薯形成的影响. 应用生态学报, 2009,20(8):1891-1895.
[9] Ma X, Wang Y, Liu M , et al. Effects of green and red lights on the growth and morphogenesis of potato (Solanum tuberosum L.) plantlets in vitro. Scientia Horticulturae, 2015,190:104-109.
doi: 10.1016/j.scienta.2015.01.006
[10] 朱广廉, 钟海文, 张爱琴 . 植物生理学实验. 北京: 北京大学出版社, 1990: 51-54.
[11] 张志良, 李小方 . 植物生理学实验指导. 高等教育出版社, 2009: 106.
[12] 周艳虹, 黄黎锋, 喻景权 . 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学学报, 2004,30(2):153-160.
[13] 李合生 . 现代植物生理学. 北京: 高等教育出版社, 2002: 137.
[14] 张晓勇 . 离子浓度、光质和激素对水培马铃薯苗薯繁殖及光合性能的影响. 重庆:西南大学, 2017.
[15] 李慧敏, 陆晓民 . 不同光质对甘蓝型油菜幼苗的生长和生理特性的影响. 西北植物学报, 2015,35(11):2251-2257.
[16] 邢泽南, 张丹, 李薇 , 等. 光质对油葵芽苗菜生长和品质的影响. 南京农业大学学报, 2012,35(3):47-51.
[17] 史宏志, 韩锦峰, 远彤 , 等. 红光和蓝光对烟叶生长、碳氮代谢和品质的影响. 作物学报, 1999,25(2):215-220.
[18] 苏俊, 刘昳雯, 杨凡 , 等. 不同光质对烟草组培苗生长及生理特性的影响. 西北植物学报, 2014,34(6):1206-1212.
[19] 陈祥伟, 刘世琦, 王越 , 等. 不同LED光源对乌塌菜生长、光合特性及营养品质的影响. 应用生态学报, 2014,25(7):1955-1962.
[20] 王丽伟, 李岩, 辛国凤 , 等. 不同比例红蓝光对番茄幼苗生长和光合作用的影响. 应用生态学报, 2017,28(5):1595-1602.
[21] 汪凤林, 曹光球, 叶义全 , 等. 不同光质下杉木幼苗叶片光合作用的光响应. 森林与环境学报, 2017,37(3):366-371.
[22] 王晓艳, 张晓楠, 成后德 , 等. 红蓝光比例对弱光下黄瓜幼苗光合功能的影响. 江苏农业学报, 2014,30(6):1410-1416.
[23] 高勇, 李清明, 刘彬彬 , 等. 不同光质配比对紫叶生菜光合特性和品质的影响. 应用生态学报, 2018,29(11):3649-3657.
[24] 王佩玲, 许育彬, 宋淑英 , 等. 大气CO2浓度倍增和施氮对冬小麦光合及叶绿素荧光特性的影响. 西北植物学报, 2011,31(1):144-151.
[25] Annick M, Elisabeth P, Gerard T . Osmotic adjustment,gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. Journal of Plant Physiology, 2004,161(1):25-33.
doi: 10.1078/0176-1617-00963 pmid: 15002661
[26] 刘晓龙, 徐晨, 徐克章 , 等. 盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响. 作物杂志,2014(2):88-92.
[27] 张建军, 樊廷录, 唐小明 , 等. 不同氮磷肥处理组合对冬小麦光合特性的影响. 作物杂志,2007(4):33-34.
[28] 郑有飞, 李健, 吴荣军 , 等. 太阳辐射减弱对冬小麦形态和光合特性影响的研究. 作物杂志,2012(4):69-74.
[29] 王海波, 王帅, 王孝娣 , 等. 光质对设施葡萄叶片衰老与内源激素含量的影响. 应用生态学报, 2017,28(11):3535-3543.
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[2] Chen Yang,Qin Yonglin,Yu Jing,Jia Liguo,Fan Mingshou. Basis and Measures for Reducing Nitrogen Fertilizer on Irrigated Potato in Inner Mongolia [J]. Crops, 2019, 35(6): 90-93.
[3] Zhang Congying,Jiang Jizhi,Liang Jiao,Qiao Liu,Huang Jie. Identification of Bacterium HT-6 and Its Antagonistic Stability against Phytophthora infestans [J]. Crops, 2019, 35(6): 162-167.
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[5] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland [J]. Crops, 2019, 35(5): 120-124.
[6] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[7] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[8] Liang Junmei,Zhang Jun,An Hao,Jing Yupeng,Li Huanchun,Duan Yu. Effects of Recommended Fertilization by Management Nutrition Expert System on Potato Yield and Fertilizer Use Efficiency [J]. Crops, 2019, 35(4): 133-138.
[9] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[10] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[11] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[12] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[13] Zhiyong Hao,Guangdong Yang,Guangwei Qiu,Zunyan Hu,Lichun Wang,Haiyan Wang. Screening of High Carotenoid Resources in Potato [J]. Crops, 2019, 35(2): 71-77.
[14] Hong Zhang,Shiying Zheng,Shuxia Liang,Guangfeng Chen,Mingyou Wang. Research Progress in Breeding Special Potatoes with High Starch Content [J]. Crops, 2019, 35(1): 9-14.
[15] Shuping Hu,Tiantian Meng,Hui Zhao,Haizhu Bao. Effects of Subsoiling on Photosynthetic Performance and Yield of Sunflower [J]. Crops, 2019, 35(1): 116-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .