Crops ›› 2020, Vol. 36 ›› Issue (5): 127-132.doi: 10.16035/j.issn.1001-7283.2020.05.019

Previous Articles     Next Articles

Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean

Hao Xiyu(), Xiao Huanyu, Liang Jie(), Wang Yingjie, Guo Wenyun   

  1. Baicheng Academy of Agricultural Science, Baicheng 137000, Jilin, China
  • Received:2020-03-30 Revised:2020-06-04 Online:2020-10-15 Published:2020-10-12
  • Contact: Liang Jie E-mail:haoxiyu1990@foxmail.com;liangjie9669@163.com

Abstract:

The effects of application rates of nitrogen (N), phosphorus (P) and potassium (K) on the yield and yield related traits were studied to ensure the optimal fertilization model and ratio suitable for mung bean. Quadratic orthogonal regressive rotation design of three factors (N, P, K) was applied to conduct field experiment. The effective functions of N, P and K application codes on the yield and yield related traits were established. The results showed that the effect of three fertilizers on the yield of mung bean was N > P > K. The yields, pods per plant and 100-seed weight of mung bean were increased first and then decreased with the increasing of application rates of N and P. The yield and pods per plant of mung bean were promoted by the interaction of P and K in the range of experiment. The optimal fertilizer application rates of N, P2O5 and K2O were respectively 81.2-89.3, 124.8-133.5, 82.6-90.7kg/ha for the target yield between 2 104.6 and 2 215.2kg/ha. The highest yield was 2 215.2kg/hm 2 with the optimal fertilizer ratio N, P2O5, K2O=1:1.54:1.03 (N: 87.4kg/ha). The best economic benefit was 15 589.89 yuan/ha with the fertilizer ratio N:P2O5:K2O=1:1.54:1.05 (N: 80.4kg/ha).

Key words: Mung bean, Yield, Yield components, Fertilization, Nitrogen, phosphorus and potassium, Optimum model

Table 1

Effective accumulated temperature, precipitation and sunshine duration during mung bean growth period in 2011-2013"

项目Item 月份Month 年份Year
2011 2012 2013
有效积温
Effective accumulated
temperature (℃)
5 492.9 520.8 570.4
6 753.0 642.0 642.0
7 740.9 740.9 740.9
8 641.7 694.4 688.2
9 504.0 477.0 462.0
降水量
Precipitation (mm)
5 72.3 31.9 48.7
6 21.9 81.6 94.1
7 141.6 194.2 227.7
8 79.2 6.5 50.2
9 11.1 69.4 40.1
日照时数
Sunshine duration (h)
5 188.5 293.6 144.3
6 268.2 200.7 209.4
7 167.1 230.9 222.2
8 217.2 283.8 203.4
9 288.3 199.6 245.0

Table 2

Design of factor level code kg/hm2"

因素Factor x1 (N) x2 (P2O5) x3 (K2O)
零水平(0)Zero level 69.0 120.0 75.0
变化区间Change interval 18.4 14.3 14.9
上水平(+1)Upper level 87.4 134.3 89.9
下水平(-1)Lower level 50.6 105.7 60.1
上星臂号(+1.682)Star on the arms 92.0 144.0 100.0
下星臂号(-1.682)Star under the arms 46.0 96.0 50.0

Table 3

Effects of different fertilizer compositions on yield and yield components of mung bean"

肥料组成Fertilizer composition 产量Yield (kg/hm2) 单株荚数
Pods per
plant (y2)
单荚粒数
Seeds per pod (y3)
百粒重(g)
100-seed
weight (y4)
处理
Treatment
N
(x1)
P2O5
(x2)
K2O
(x3)
2011 2012 2013 平均(y1)
Average
1 -1 -1 -1 2 270.4 2 234.2 2 391.2 2 298.6aA 30.20aA 13.9aA 6.42aA
2 -1 -1 -1 2 198.0 2 077.5 2 058.9 2 111.5abcdeABC 21.27abcdABC 12.8aA 6.06abcdefABCDEF
3 -1 -1 -1 1 949.0 2 307.0 2 137.9 2 131.3abcdeABC 22.76abcdABC 13.4aA 6.10abcdeABCDEF
4 -1 -1 -1 1 912.1 2 127.1 2 161.0 2 066.8bcdefABC 19.85bcdABC 12.9aA 5.93cdefgBCDEF
5 -1 -1 -1 2 290.9 2 181.8 2 013.9 2 162.2abcdABC 25.09abcABC 12.6aA 6.17abcdeABCD
6 -1 -1 -1 2 037.4 1 886.5 1 971.4 1 965.1defBC 17.40cdBC 12.2aA 5.81efgCDEF
7 -1 -1 -1 2 088.0 1 884.3 2 020.1 1 997.5cdefBC 18.82cdABC 12.5aA 5.88defgBCDEF
8 -1 -1 -1 1 826.7 1 980.2 1 892.5 1 899.8fC 15.39dC 12.6aA 5.65gEF
9 -1.682 -0 -0 1 934.2 1 955.7 1 919.8 1 936.6efBC 16.88cdBC 12.7aA 5.64gF
10 -1.682 -0 -0 2 332.6 2 213.2 2 066.3 2 204.1abAB 21.08abcdABC 12.3aA 5.98bcdefgABCDEF
11 -0 -1.682 -0 2 022.4 2 043.7 1 972.9 2 013.0bcdefBC 19.40bcdABC 12.8aA 5.72fgDEF
12 -0 -1.682 -0 2 134.7 2 145.4 2 214.6 2 164.9abcdABC 19.59bcdABC 12.6aA 6.32abAB
13 -0 -0 -1.682 2 014.3 2 008.9 1 966.0 1 996.4cdefBC 17.78cdBC 12.9aA 5.82efgCDEF
14 -0 -0 -1.682 1 989.0 2 236.1 2 283.2 2 169.4abcABC 21.28abcdABC 12.7aA 6.35aAB
15 -0 -0 -0 2 064.6 2 271.9 2 136.7 2 157.8abcdABC 23.86abcdABC 13.0aA 6.162abcdeABCD
16 -0 -0 -0 2 225.2 2 047.9 2 172.0 2 148.4abcdABC 23.28abcdABC 12.8aA 6.12abcdeABCD
17 -0 -0 -0 2 167.0 2 103.8 2 085.7 2 118.8abcdeABC 21.53abcdABC 12.6aA 6.09abcdeABCDEF
18 -0 -0 -0 2 118.9 2 182.3 2 254.8 2 185.3abcAB 25.93abcABC 12.6aA 6.20abcdABC
19 -0 -0 -0 2 272.3 1 969.3 2 196.6 2 146.1abcdABC 22.89abcdABC 13.0aA 6.11abcdeABCDE
20 -0 -0 -0 2 359.6 2 116.0 2 088.2 2 187.9abcAB 28.19abAB 12.7aA 6.23abcdABC
21 -0 -0 -0 2 133.4 2 103.4 2 209.8 2 148.9abcdABC 23.60abcdABC 12.3aA 6.13abcdeABCD
22 -0 -0 -0 2 301.9 2 174.4 2 107.3 2 194.5abcAB 30.07aA 12.9aA 6.28abcABC
23 -0 -0 -0 2 187.6 2 075.6 2 221.7 2 161.7abcdABC 24.32abcdABC 12.0aA 6.16abcdeABCD

Fig.1

Single factor effect of N, P and K application rate on the yield of mung bean"

Fig.2

Single factor effect of N, P and K application rate on the pods per plant of mung bean"

Fig.3

Interaction analysis of N, P and K application rate on the yield of mung bean"

Fig.4

Interaction analysis of N, P and K application rate on the pods per plant of mung bean"

Table 4

Frequency distribution for the yield of mung bean between 2 104.6 and 2 215.2kg/hm2 (33 schemes)"

水平Level x1 (N) 频率Frequency (%) x2 (P2O5) 频率Frequency (%) x3 (K2O) 频率Frequency (%)
-1.682 0 0.0 0 0.0 0 0.0
-1 0 0.0 4 12.1 2 6.1
0 10 30.3 10 30.3 10 30.3
1 14 42.4 10 30.3 11 33.3
1.682 9 27.3 9 27.3 10 30.3
平均值Average 0.883 0.640 0.782
标准误Standard error 0.112 0.154 0.139
95%置信区间95% confidence interval 0.663~1.103 0.338~0.943 0.510~1.055
最佳施肥量The optimal fertilization (kg/hm2) 81.2~89.3 124.8~133.5 82.6~90.7

Table 5

Frequency distribution for the pods per plant of mung bean between 44.1 and 51.1 pods (23 schemes)"

水平Level x1 (N) 频率 Frequency (%) x2 (P2O5) 频率Frequency (%) x3 (K2O) 频率Frequency (%)
-1.682 0 0.0 0 0.0 0 0.0
-1 0 0.0 7 30.4 0 0.0
0 9 39.1 9 39.1 7 30.4
1 9 39.1 7 30.4 9 39.1
1.682 5 21.7 0 0.0 7 30.4
平均值Average 0.757 0.000 0.903
标准误Standard error 0.137 0.163 0.138
95%置信区间95% confidence interval 0.488~1.026 -0.319~0.319 0.633~1.173
最佳施肥量The optimal fertilization (kg/hm2) 78.0~87.9 115.4~124.6 84.4~92.5
[1] 龙静宜, 林黎奋, 侯修身, 等. 食用豆类作物. 北京: 科学出版社, 1989: 137-138.
[2] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997: 142.
[3] 林汝法, 柴岩, 廖琴, 等. 中国小杂粮. 北京: 中国农业科技出版社, 2002: 197.
[4] 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42(5):1519-1527.
[5] 张蕙杰, 郭永田, 周俊玲, 等. 近年绿豆价格波动的成因分析. 农业经济问题, 2012,33(4):30-34.
[6] 王桂梅, 邢宝龙, 张旭丽, 等. 绿豆“3414”肥效试验及平衡施肥技术. 湖北农业科学, 2018,57(10):36-38,44.
[7] 郝曦煜, 梁杰, 陈剑, 等. Cu+2、Mg2+、Fe2+浸种及喷施对绿豆产量及叶片部分生理指标的影响 . 东北农业科学, 2017,42(5):25-29.
[8] 梁杰, 陈剑, 尹智超, 等. CuSO4、MgSO4、FeSO4对绿豆N、P、K含量的影响. 作物杂志, 2016(2):151-158.
[9] 李莉, 展铭, 陈宏伟, 等. 磷肥对绿豆氮、磷、钾积累分配及产量构成因子的影响. 湖北农业科学, 2015,54(23):5835-5839.
[10] 闫虎斌, 赵雪英, 张春明, 等. 晋北地区绿豆“3414”肥效试验. 山西农业科学, 2015,43(7):857-860.
[11] 梁杰, 陈剑, 尹智超, 等. Cu2+、Mg2+、Fe2+对绿豆干物质积累及产量的影响. 作物杂志, 2015(1):114-120.
[12] 赵存虎, 孔庆全, 贺小勇, 等. 绿豆田氮、磷、钾最佳用量及平衡施肥技术研究. 内蒙古农业科技, 2013(5): 60,87.
[13] 曾玲玲, 崔秀辉, 李清泉, 等. 氮磷钾配施对绿豆产量的效应研究. 黑龙江农业科学, 2010(7):48-51.
[14] 徐福利, 王振, 徐慧敏, 等. 日光温室滴灌条件下黄瓜氮、磷、有机肥肥效与施肥模式研究. 植物营养与肥料学报, 2009,15(1):177-182.
doi: 10.11674/zwyf.2009.0126
[15] 王静, 王渭玲, 徐福利, 等. 桔梗N、P、K施肥效应与施肥模式研究. 植物营养与肥料学报, 2012,18(1):196-202.
doi: 10.11674/zwyf.2012.11237
[16] 赵斌, 王勇, 路钰, 等. 多元二次肥料效应函数极值的判别及函数优化. 园艺与种苗, 2001,21(2):42-45.
[17] 王乐政, 华方静, 曹鹏鹏, 等. 氮磷钾配施对红小豆干物质积累、产量和效益的影响. 核农学报, 2019,33(10):2058-2067.
[18] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21(1):81-91.
doi: 10.11674/zwyf.2015.0109
[19] 田艳洪. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响. 哈尔滨:东北农业大学, 2007: 17-18.
[20] 邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究. 武汉:华中农业大学, 2010.
[21] Cui Z L, Zhang F S, Chen X P, et al. In-season nitrogen management strategy for winter wheat:Maximizing yields,minimizing environmental impact in an over-fertilization context. Field Crop Research, 2010,116(1):140-146.
doi: 10.1016/j.fcr.2009.12.004
[22] 何萍, 金继运, 林葆, 等. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998,4(2):123-130.
doi: 10.11674/zwyf.1998.0204
[1] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
[2] Sun Qi, Geng Yanqiu, Jin Feng, Liu Lixin, Zheng Huantong, Guo Liying, Shao Xiwen. Effects of Sowing Dates on Yield, Dry Matter and Nitrogen Accumulation and Translocationin Organs after Anthesis of Direct Seeding Rice [J]. Crops, 2020, 36(5): 119-126.
[3] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[4] Ding Kaixin, Shan Ying, Feng Naijie, Zheng Dianfeng, Liang Xilong, Wu Qiong, Huang Wenting. Effects of DTA-6 on Physiological Metabolism and Yield of Two Edible Legumes [J]. Crops, 2020, 36(5): 148-153.
[5] Kang Kai, Liu Lihua, Qin Meng, Zheng Guiping, Zhang Xuesong, Bai Chongyang, Zhao Shuang, Gao Xiaohui. Effects of Ridge Tillage of Double Depth and Planting Space on Photosynthesis, Yield and Panicle Traits of Rice [J]. Crops, 2020, 36(5): 164-169.
[6] Luo Xinglu, Huang Xiaofeng, Wu Meiyan, Liu Shanqian, Zhao Bowei. Studies on Physiological Characteristics and Main Agronomic Traits of Five Cassava Varieties [J]. Crops, 2020, 36(5): 182-187.
[7] Zhou Haitao, Zhao Mengyuan, Zhang Xinjun, Li Tianliang, Liu Wenting, Liu Zhenning, Yang Xiaohong, Yuan Huifu. Effects of Mepiquat Chloride and Chlorocholine Chloride on the Growth and Yield of Oat [J]. Crops, 2020, 36(5): 188-193.
[8] Jia Suqing, He Lu, Du Yanwei. Effects of Different Tillage Methods on Root Development,Yield and Water Use Efficiency of Spring Millet in Arid Area [J]. Crops, 2020, 36(5): 194-198.
[9] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[10] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[11] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[12] Yang Haifeng, Duan Xueyan, Wei Ling, Liu Bo. The Genetic Study of Yield Traits in Edible Sunflower [J]. Crops, 2020, 36(5): 93-97.
[13] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[14] Qin Hongde, Rong Yihua, Huang Xiaoli, Hu Aibing, Zhou Jiahua, Yan Xianhui, Li Wei, Zhang Xianhong, Li Hongju, Yang Guozheng. Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization [J]. Crops, 2020, 36(4): 127-134.
[15] Cao Changlin, Lü Huiqing, Hao Zhiping, Gao Xiang, Zhou Zhongyu. Effects of Foliar Spraying Zinc and Boron Fertilizer on the Yield and Quality of Jin Buckwheat (Bitter) No.5 [J]. Crops, 2020, 36(4): 135-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!