Crops ›› 2022, Vol. 38 ›› Issue (4): 221-226.doi: 10.16035/j.issn.1001-7283.2022.04.031

Previous Articles     Next Articles

Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations

Qiao Yujia(), Wei Ling(), Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan   

  1. Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, Shanxi, China
  • Received:2021-05-07 Revised:2021-05-21 Online:2022-08-15 Published:2022-08-22
  • Contact: Wei Ling E-mail:18235445223@163.com;WL720514@163.com

Abstract:

In order to study yield differences in soybeans between years, locations, varieties and interaction effects, the multi-factor analysis of variance was carried out on the test data of the northern, central and southern parts of the Huanghuaihai summer soybean regions from 2016 to 2017. The results showed that, with the exception of the soybean yield difference of the years×varieties in the northern part was not significant (P > 0.05), the years, the locations, the varieties and the interaction effect years×locations, years×varieties, locations×varieties, and years×locations×varieties had extremely significant differences in soybean yield (P < 0.01). The contribution rates of the locations were the highest with 57.92%, 71.76%, 46.91% of the yield of the northern, central and southern parts, the contribution rates of the varieties were 3.85%, 4.67%, 8.52%, and the contribution rates for the years were 2.85%, 1.02% and 0.71%, respectively. Multiple comparative analyzes showed that Ningjin, Handan of Hebei and Heze of Shandong with the highest average yield in the northern, central and southern parts were 45.66%, 71.67% and 50.13% higher than those of Shijiazhuang of Hebei, Luoyang of Henan and Suzhou of Anhui with the lowest average yield, and the differences were extremely significant. The average yields of Zhonghuang 78, Zhonghuang 70, and Zhonghuang 301 were significantly higher than those of the corresponding control varieties, and the coefficient of variation was small. The correlation analysis showed that the soybean yield had a very significant positive correlation with the seed weight per plant and the 100-seed weight, but had no significant correlation with the longitude and latitude of different planting locations. Therefore, in attaining a high yield of soybeans, the first requirement is the selection of high quality, high yield, and wide adaptability soybean varieties. Improving soybean management and releasing yield potential fully also contribute to achieving high yield.

Key words: Huanghuaihai summer soybean, Regional test, Yield, Location, Variety

Table 1

The geographic locations of each location"

片区Part 地点Location 纬度Latitude (N) 经度Longitude (E)
北片
Northern
北京昌平 39°43′ 116°20′
北京大兴 39°57′ 116°19′
河北石家庄 38°02′ 114°38′
河北南皮 38°02′ 116°42′
河北宁晋 37°31′ 114°56′
河北易县 39°20′ 115°29′
山东德州 37°27′ 116°18′
中片
Middle
河北邯郸 36°34′ 114°31′
河南郑州 34°47′ 113°40′
河南洛阳 34°38′ 112°28′
河南濮阳 35°45′ 115°01′
山东潍坊 36°43′ 119°10′
山西临汾 36°06′ 111°30′
南片
Southern
安徽阜阳 32°55′ 115°47′
安徽龙亢 33°05′ 116°51′
安徽宿州 33°37′ 116°58′
河南周口 33°38′ 114°40′
河南驻马店 32°59′ 114°01′
江苏灌云 34°19′ 119°15′
江苏淮安 33°36′ 119°00′
江苏徐州 34°16′ 117°17′
山东菏泽 35°19′ 115°29′
山东济宁 35°28′ 116°35′
山东临沂 35°05′ 118°15′

Table 2

Multi-factor variance analysis of summer soybean yield in Huanghuaihai region"

片区
Part
变异来源
Resource of variation
平方和
SS
自由度
df
均方
MS
F
F-value
占总平方和百分比
Percentage of total sum of squares (%)
北片
Northern
区组 364.62 2 182.31 1.22ns 0.14
年份 7395.90 1 7395.90 49.34** 2.85
地点 150 231.50 6 25 038.58 167.06** 57.92
品种 9982.84 4 2495.71 16.65** 3.85
年份×地点 32 727.13 6 5454.52 36.39** 12.62
年份×品种 350.52 4 87.63 0.58ns 0.14
地点×品种 16 017.63 24 667.40 4.45** 6.18
年份×地点×品种 21 607.06 24 900.29 6.01** 8.33
总和 259 360.88 209
中片
Middle
区组 2058.88 2 1029.44 5.69** 0.26
年份 7955.86 1 7955.86 44.00** 1.02
地点 561 520.15 5 11 2304.03 621.14** 71.76
品种 36 527.32 7 5218.19 28.66** 4.67
年份×地点 66 586.64 5 13 317.33 73.66** 8.51
年份×品种 10 424.44 7 1489.21 8.24** 1.33
地点×品种 43 787.51 35 1251.07 6.92** 5.60
年份×地点×品种 19 273.85 35 550.68 3.05** 2.46
总和 782 487.16 287
片区
Part
变异来源
Resource of variation
平方和
SS
自由度
df
均方
MS
F
F-value
占总平方和百分比
Percentage of total sum of squares (%)
南片
Southern
区组 274.63 2 137.32 1.49ns 0.03
年份 6022.71 1 6022.71 65.56** 0.71
地点 396 825.79 10 39 682.58 431.98** 46.91
品种 72 054.01 10 7205.40 78.44** 8.52
年份×地点 123 557.20 10 12 355.72 134.50** 14.61
年份×品种 10 726.38 10 1072.64 11.68** 1.27
地点×品种 118 856.65 100 1188.57 12.94** 14.05
年份×地点×品种 73 363.55 100 733.64 7.99** 8.67
总和 845 958.47 725

Table 3

Soybean yield comparison of different locations"

片区
Part
地点
Location
平均产量
Average yield (kg/hm2)
标准差
SD
变异系数
CV (%)
北片
Northern
北京昌平 3178.80dD 282.90 8.9
北京大兴 3390.73cC 413.70 12.2
河北石家庄 2793.45fE 259.95 9.31
河北南皮 3588.75bB 437.85 12.2
河北宁晋 4069.05aA 304.50 7.48
河北易县 3242.10dD 285.45 8.8
山东德州 2888.55eE 402.60 13.94
平均 3307.35 508.65
中片
Middle
河北邯郸 3943.50aA 407.25 10.33
河南郑州 3793.35bB 481.35 12.69
河南洛阳 2297.10fF 360.75 15.7
河南濮阳 3515.10cC 341.55 9.72
山东潍坊 2462.85eE 382.05 15.51
山西临汾 2633.25dD 517.20 19.64
平均 3107.53 783.28
南片
Southern
安徽阜阳 2526.90gF 271.35 10.74
安徽龙亢 2733.15fE 247.65 9.06
安徽宿州 2432.25gG 271.20 11.15
河南周口 2779.05fE 443.25 15.95
河南驻马店 2491.05gFG 303.30 12.18
江苏灌云 2782.80fE 434.25 15.60
江苏淮安 3045.75cC 282.45 9.28
江苏徐州 2877.60eD 275.55 9.58
山东菏泽 3651.45aA 510.75 13.99
山东济宁 3326.85bB 372.15 11.19
山东临沂 2994.00dC 560.55 18.72
平均 2876.44 499.33

Table 4

Yield comparison of different soybean varieties"

片区
Part
品种
Variety
平均产量
Average yield (kg/hm2)
标准差
SD
变异系数
CV (%)
北片
Northern
齐黄34 3364.65bAB 505.80 15.03
中黄78 3467.70aA 480.75 13.86
中黄74 3292.65bcBC 517.05 15.70
冀豆19 3249.00cCD 588.90 18.13
冀豆12(CK) 3162.90dD 517.20 16.35
中片
Middle
中黄70 3073.05cB 553.35 18.01
洛豆1号 3361.35aA 944.40 28.10
荷豆29号 3173.70bB 799.95 25.21
圣豆十号 3184.20bB 768.90 24.15
运豆101 3181.80bB 675.90 21.24
石153 2870.70dC 726.15 25.29
冀1309 3196.05bB 962.40 30.11
邯豆5号(CK) 2819.40dC 675.45 23.96
南片
Southern
HD 21116 2825.90eD 494.19 18.07
中黄301 3165.94aA 526.25 17.18
中作X96058 2635.99gF 518.49 19.57
蒙01-42 2817.31eD 403.15 14.63
淮12-13 2710.25fE 323.03 12.12
中黄13(CK1 2962.02cB 586.15 20.51
濉科8号 2950.22cBC 546.26 19.35
徐0117-46 2891.56dC 447.36 15.88
周豆25号 2962.40cB 490.48 17.12
荷豆28 3016.69bB 647.01 22.52
中黄13(CK2 2702.41fE 347.47 13.32

Table 5

Soybean yield comparison of different years"

片区
Part
年份
Year
平均产量
Average yield (kg/hm2)
标准差
SD
变异系数
CV (%)
北片
Northern
2016 3218.34bB 463.04 14.39
2017 3396.36aA 575.07 16.93
中片
Middle
2016 3028.68bB 928.02 30.64
2017 3186.39aA 598.00 18.77
南片
Southern
2016 2919.63aA 559.65 19.17
2017 2833.22bB 457.00 16.13

Table 6

Correlations of yield with geographic locations and agronomic traits"

项目
Item
纬度
Latitude
经度
Longitude
生育期
Growth
period
株高
Plant
height
底荚高度
Bottom pods
height
主茎节数
Node
number
有效分枝
Effective
branch number
单株有效荚数
Effective pod
per plant
单株粒数
Seeds number
per plant
单株粒重
Seeds weight
per plant
百粒重
100-seed
weight
产量
Yield
0.4050 -0.0990 0.2567 0.3677 0.2364 0.0330 0.1930 0.1873 0.4184 0.6767** 0.5432**
[1] 高明. 土壤环境地球化学条件与大豆产量/质量的关系研究―以吉林省为例. 长春:吉林大学, 2017.
[2] 盖钧镒. 作物育种学各论. 北京: 中国农业出版社, 2006.
[3] 李卫东. 黄淮海夏大豆及品种参数. 北京: 中国农业科学技术出版社, 2006.
[4] 常世豪, 杨青春, 舒文涛, 等. 黄淮海夏大豆品种(系)主要农艺性状的综合性分析. 作物杂志, 2020(3):66-72.
[5] 慈敦伟, 张礼凤, 汪宝卿, 等. 大豆种质资源农艺性状和产量的年份间差异及其关系. 植物遗传资源学报, 2011, 12(6):872-880.
[6] 史宏. 不同生态类型大豆农艺性状与产量关系的研究. 华北农学报, 2018, 33(1):150-159.
[7] 牛宁, 李振侠, 金素娟, 等. 黄淮海地区大豆光合特性及高光效种质筛选. 中国油料作物学报, 2018, 40(4):524-532.
[8] 刘章雄, 杨春燕, 徐冉, 等. 大豆微核心种质在黄淮地区的区域适应性分析. 作物学报, 2011, 37(3):443-451.
[9] 何鑫, 马文娅, 付汝洪, 等. 2006-2017年国家黄淮海夏大豆品种区域试验参试品种(系)分析. 中国油料作物学报, 2019, 41(4):537-549.
[10] 刘晓, 王丽, 王天舒, 等. 黄淮海耐压实大豆品种的初步筛选及根系特征分析. 大豆科学, 2020, 39(3):329-340.
[11] 王乐政, 华方静, 曹鹏鹏, 等. 不同播期夏大豆的产量、光合特性和气象因子效应研究. 中国油料作物学报, 2019, 41(5):750-757.
[12] Liu X B, Herbert S J. Some aspects of yield physiology research in soybean. Journal of Northeast Agricultural University (English Edition), 2000(1):71-78.
[13] 尹阳阳, 徐彩龙, 宋雯雯, 等. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 32(4):15-21.
[14] 陈曦. 大豆高代品系的稳定性与适应性分析. 郑州:河南农业大学, 2019.
[15] 郑伟. SHMM模型在大豆品种区域试验中的应用. 中国农学通报, 2007(7):207-210.
[16] Carkner M K, Entz M H. Growing environment contributes more to soybean yield than cultivar under organic management. Field Crops Research, 2017, 207:42-51.
doi: 10.1016/j.fcr.2017.02.019
[17] 胡国玉, 李杰坤, 王大刚, 等. 夏播大豆产量的环境响应及高产品种的主要特性. 大豆科学, 2017, 36(4):531-539.
[18] Merlos F A, Monzon J P, Andrade F H, et al. Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Research, 2015, 184:145-154.
doi: 10.1016/j.fcr.2015.10.001
[19] Fischer T, Byerlee D, Edmeades G. Crop yields and global food security:will yield increase continue to feed the world?. Cranberra:Australian Centre for International Agricultural Research, 2014.
[20] Di M G, Cipriotti P A, Santiago G, et al. Environmental and management variables explain soybean yield gap variability in Central Argentina. European Journal of Agronomy, 2018, 99:186-194.
doi: 10.1016/j.eja.2018.04.012
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[7] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[8] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[9] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[10] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[15] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!