Crops ›› 2021, Vol. 37 ›› Issue (3): 84-90.doi: 10.16035/j.issn.1001-7283.2021.013

Previous Articles     Next Articles

Effects of Genotype, Nitrogen Application Rate and Their Interactions on Polyphenols in Flue-Cured Tobacco

Zhang Xi(), Wang Huifang, Dai Zhuoyi, Xue Gang, Xu Shixiao, Yang Tiezhao()   

  1. College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2020-09-10 Revised:2020-10-22 Online:2021-06-15 Published:2021-06-22
  • Contact: Yang Tiezhao E-mail:xiaoxi59065166@126.com;yangtiezhao@126.com

Abstract:

To explore the effects of genotypes, nitrogen application rates, and their interactions on flue-cured tobacco polyphenols, a two-factor randomized block experiment was conducted with three flue-cured tobacco varieties, Zhongyan 100, Yunyan 87, and K326, and three nitrogen levels, low nitrogen (45kg/ha), medium nitrogen (60kg/ha) and high nitrogen (75kg/ha) was used as treatments to study their effects on the contents of total phenols, chlorogenic acid, rutin and scopoletin in tobacco leaves. The results showed that genotypes, nitrogen application rates, and their interactions contributed differently to the variation of flue-cured tobacco total phenols, chlorogenic acid, rutin, and scopoletin. The contribution rates of genotypes were 2.50%, 5.13%, 4.70% and 15.95%; The contribution rates of nitrogen application rates were 59.30%, 42.55%, 38.30%, and 67.79%; genotype and nitrogen application rate interaction were 36.40%, 51.20%, 51.50%, and 15.03%. The results of the interaction effect between genotype and nitrogen application rate showed that the contents of total phenols, chlorogenic acid, and rutin were higher under the conditions of high nitrogen and Zhongyan 100, and the contents of total phenols and rutin of K326 were higher. The contents of total phenols, chlorogenic acid, and rutin of Yunyan 87 were higher under medium nitrogen conditions, while those of total phenols, rutin, and scopoletin were higher when interacting with K326. The chlorogenic acid content of Yunyan 87 was higher under the condition of low nitrogen, . It is an important measure to increase the content of polyphenols in tobacco leaves by applying suitable nitrogen application rates for planting varieties.

Key words: Genotype, Nitrogen application rate, Interaction, Flue-cured tobacco, Polyphenols

Table 1

Analysis of variance of total phenol content"

变异来源
Source of variation
自由度
Degree of freedom
平方和
Sum of square
均方
Evenly split
F F0.05 F0.01 贡献率
Contribution rate (%)
基因型Genotype 2 0.871 0.435 10.845 3.634 6.226 2.50
施氮量Nitrogen application rate 2 21.084 10.542 262.626 3.634 6.226 59.30
基因型×施氮量
Genotype×nitrogen application rate
4 12.931 3.233 80.532 3.007 4.773 36.40
误差Error 16 0.642 0.040 1.80
总变异Total variation 26 35.587

Table 2

The total phenol contents of flue-cured tobacco leaves between different genotypes and nitrogen application rates mg/g"

项目Item 平均值Average
施氮量Nitrogen application rate N1 14.14c
N2 16.26a
N3 15.58b
基因型Genotype 中烟100 15.52a
云烟87 15.38a
K326 15.09b

Table 3

Interaction effects of genotypes and nitrogen application rates"

施氮量
Nitrogen
application rate
中烟100
Zhongyan 100
云烟87
Yunyan 87
K326 N主效应
N main
effect
N1 -0.27 0.71 -0.44 -1.19
N2 -0.66 0.60 0.05 0.93
N3 0.93 -1.31 0.38 0.25
基因型主效应
Genotype main effect
0.19 0.05 -0.24

Fig.1

Difference of total phenol content in different nitrogen application rates Different letters indicate significant difference at the level of 0.05, the same below"

Table 4

Analysis of variance of chlorogenic acid content"

变异来源
Source of variation
自由度
Degree of freedom
平方和
Sum of square
均方
Evenly split
F F0.05 F0.01 贡献率
Contribution rate (%)
基因型Genotype 2 0.769 0.384 36.754 3.634 6.226 5.13
施氮量Nitrogen application rate 2 6.374 3.187 304.708 3.634 6.226 42.55
基因型×施氮量
Genotype×Nitrogen application rate
4 7.649 1.912 182.809 3.007 4.773 51.20
误差Error 16 0.167 0.010 1.12
总变异Total variation 26 15.009

Table 5

Chlorogenic acid content of flue-cured tobacco leaves with different genotypes and nitrogen application rates mg/g"

项目Item 平均值Average
施氮量Nitrogen application rate N1 8.31c
N2 9.49a
N3 9.05b
基因型Genotype 中烟100 8.95b
云烟87 9.16a
K326 8.75c

Table 6

Interaction effects between genotypes and nitrogen application rates"

施氮量
Nitrogen
application rate
中烟100
Zhongyan 100
云烟87
Yunyan 87
K326 N主效应
N main
effect
N1 0.14 -0.30 -0.47 -0.64
N2 -0.86 0.94 0.46 0.54
N3 0.73 -0.64 0.01 0.10
基因型主效应Genotype main effect 0.01 0.21 -0.20

Fig.2

Difference of chlorogenic acid content in different nitrogen application rates"

Table 7

Analysis of variance of rutin content"

变异来源
Source of variation
自由度
Degree of freedom
平方和
Sum of square
均方
Evenly split
F F0.05 F0.01 贡献率
Contribution rate (%)
基因型Genotype 2 0.333 0.167 6.842 3.634 6.226 4.70
施氮量Nitrogen application rate 2 2.723 1.361 55.884 3.634 6.226 38.30
基因型×施氮量
Genotype×Nitrogen application rate
4 3.662 0.915 37.581 3.007 4.773 51.50
误差Error 16 0.390 0.024 5.50
总变异Total variation 26 7.110

Table 8

Rutin content of flue-cured tobacco leaves with different genotypes and nitrogen application rates mg/g"

项目Item 平均值Average
施氮量Nitrogen application rate N1 5.61b
N2 6.33a
N3 6.22a
基因型Genotype 中烟100 6.19a
云烟87 5.92b
K326 6.06ab

Table 9

Interaction effect between genotype and nitrogen application rate"

施氮量
Nitrogen
application rate
中烟100
Zhongyan 100
云烟87
Yunyan 87
K326 N主效应
N main
effect
N1 -0.39 -0.08 0.03 -0.44
N2 0.16 0.56 -0.44 0.28
N3 0.24 -0.48 0.41 0.17
基因型主效应
Genotype main effect
0.13 -0.14 0.01

Fig.3

Difference of rutin content in different nitrogen application rates"

Table 10

Analysis of variance of scopoletin content"

变异来源
Source of variation
自由度
Degree of freedom
平方和
Sum of square
均方
Evenly split
F F0.05 F0.01 贡献率
Contribution rate (%)
基因型Genotype 2 0.052 0.026 105.242 3.634 6.226 15.95
施氮量Nitrogen application rate 2 0.221 0.110 447.751 3.634 6.226 67.79
基因型×施氮量
Genotype×Nitrogen application rate
4 0.049 0.012 49.776 3.007 4.773 15.03
误差Error 16 0.004 0 1.23
总变异Total variation 26 0.326

Table 11

Scopoletin content of flue-cured tobacco leaves with different genotypes and nitrogen application rates mg/g"

项目Item 平均值Average
施氮量Nitrogen application rate N1 0.22c
N2 0.44a
N3 0.29b
基因型Genotype 中烟100 0.38a
云烟87 0.30b
K326 0.28b

Table 12

Interaction effect between genotype and nitrogen application rate"

施氮量
Nitrogen
application rate
中烟100
Zhongyan 100
云烟87
Yunyan 87
K326 N主效应
N main
effect
N1 -0.02 0.01 0.01 -0.10
N2 0.05 -0.08 0.03 0.12
N3 -0.03 0.07 -0.04 -0.01
基因型主效应Genotype main effect 0.06 -0.02 -0.04

Fig.4

Difference of scopoletin content in different nitrogen application rates"

[1] 韩锦峰 . 烟草栽培生理. 北京: 农业出版社, 1986.
[2] 朱小茜, 徐晓燕, 黄义德 , 等. 多酚类物质对烟草品质的影响. 安徽农业科学, 2005(10):1910-1911.
[3] 王昇, 谢复炜, 吴鸣 , 等. 多酚在白肋烟生长、采收、调制过程中的变化研究. 中国烟草学报, 2004(5):5-11.
[4] 贺文俊, 何佳, 孙志浩 , 等. 烟草烟叶多酚类物质代谢影响因素的研究进展. 贵州农业科学, 2019,47(2):4-7.
[5] 王松峰, 王爱华, 王先伟 , 等. 密集烘烤工艺对烟叶多酚类物质含量及PPO活性的影响. 中国烟草学报, 2013,19(5):58-61.
[6] 王传义, 孙福山, 王廷晓 , 等. 不同成熟度烟叶烘烤过程中生理生化变化研究. 中国烟草科学, 2009,30(3):49-53.
[7] 杨银菊, 张彦, 王树声 , 等. 打顶对烟草叶片多酚代谢及其关键酶的影响. 中国烟草学报, 2018,24(1):60-67.
[8] 孙志浩, 霍昭光, 张宝全 , 等. 海拔高度、品种及其互作对烤烟多酚类物质的影响. 中国烟草科学, 2017,38(6):74-78.
[9] 许晓敬, 张小全, 刘冰洋 , 等. 生态、品种和栽培措施及其互作对烤烟多酚类物质的影响. 江苏农业科学, 2016,44(3):117-120.
[10] 周健飞, 武云杰, 薛刚 , 等. 烟叶成熟期氮代谢酶活性、基因表达与烤烟氮素利用效率的关系. 植物营养与肥料学报, 2018,24(3):625-632.
[11] 莫志琴, 张小全, 武云杰 , 等. 施氮量对驻马店不同烤烟品种化学成分和香气物质的影响. 江西农业学报, 2012,24(9):88-91.
[12] 王爱华, 王松峰, 宫长荣 . 氮素用量对烤烟上部叶片多酚类物质动态的影响. 西北农林科技大学学报(自然科学版), 2005(3):57-60.
[13] 张渝婕 . 密度与氮用量互作对烤烟品质效应的影响. 郑州: 河南农业大学, 2016.
[14] 孟祥东, 赵铭钦, 李元实 , 等. 不同氮素形态及比例对烤烟多酚及相关酶活性动态的影响. 江西农业大学学报, 2010,32(1):25-30.
[15] 杨志晓, 王轶, 任学良 , 等. 烟草多酚类化合物合成与积累影响因素研究进展. 河南农业科学, 2012,41(10):1-5.
[16] 国家烟草专卖局. YC/T 202-2006烟草及烟草制品多酚类化合物绿原酸、莨菪亭和芸香苷的测定. 北京: 中国标准出版社, 2006.
[17] 李晓宁, 徐兴阳, 范茂攀 , 等. 烟草不同叶位多酚含量及相关酶活性变化的研究. 湖北农业科学, 2019,58(9):80-85,106.
[18] 吴碧球, 李成, 孙祖雄 , 等. 苗龄、光照强度和施氮量对抗褐飞虱水稻品种主要防御酶活性的影响. 环境昆虫学报, 2016,38(6):1121-1133.
[19] 凌岩, 秦健, 尚旭岚 , 等. 施氮量对青钱柳幼苗生长和总酚积累的影响. 植物资源与环境学报, 2020,29(4):45-51.
[20] 李飞, 杨铁钊, 张小全 , 等. 不同施氮量烤烟氮素代谢差异及其对香气前体物形成的影响. 华北农学报, 2014,29(1):170-177.
[21] 张生杰, 黄元炯, 任庆成 , 等. 氮素对不同品种烤烟叶片衰老、光合特性及产量和品质的影响. 应用生态学报, 2010,21(3):668-674.
[22] 岳喜良, 秦健, 洑香香 , 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响. 南京林业大学学报(自然科学版), 2020,44(2):35-42.
[23] 耿素祥, 王树会, 刘卫群 . 不同施氮条件对烤烟打顶前后代谢及物质积累的影响. 中国生态农业学报, 2011,19(6):1250-1254.
[24] 刘化冰, 尚晓颍, 刘建国 , 等. 成熟度、品种及其互作对烤烟多酚类物质的影响. 中国烟草科学, 2019,40(4):29-36.
[25] 黄元炯, 张生杰, 马永建 , 等. 不同烤烟品种(基因型)氮效率及耐低氮能力的差异. 烟草科技, 2013(4):71-77.
[1] Zhang Jiuquan, Yu Xiangwen, Ling Aifen, Wang Yong, Li Leilei, Dong Jianxin. Optimal Specification of Tobacco Seedling Tray for Small Seedling Transplanting under Plastic Film [J]. Crops, 2021, 37(4): 123-129.
[2] Zhang Jiawen, Lu Shaohao, Zhao Mingqin, Zhong Qiu, Wang Jun, Yi Kai, Xiang Huan. Effects of Nitrogen Application Rates on Carbon and Nitrogen Metabolism and Quality of Cigar Leaves in Sichuan [J]. Crops, 2021, 37(4): 159-165.
[3] Wang Kun, Wei Yuewei, Ji Xiaoming, Yun Fei, Zou Kai, Long Zhun. Effects of Combined Application of Biochar-Based Fertilizer and Trichoderma harzianum on the Qualities of Flue-Cured Tobacco and Tobacco-Growing Soil [J]. Crops, 2021, 37(3): 106-113.
[4] Wang Huifang, Zhang Xi, Feng Xiaohu, Li Yifan, Zhang Hong, Zhao Songchao, Zhao Mingqin. Effects of Different Plant Growth Regulators on the Growth and Development of Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 173-177.
[5] Feng Xinwei, Huang Ying, Wu Guili, Gou Jianyu, Peng Yulong. Effects of Different Calcium Concentrations on Growth and Magnesium Absorption of Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 190-194.
[6] Zhang Yunping, Guo Shanhu, Zhang Jintao, Xie Yan, Yi Ke, Li Qiang. The Relationship between Trace Elements in Tobacco Leaves and Soil pH in Qujing [J]. Crops, 2021, 37(2): 178-182.
[7] Wang Dequan, Sun Yanguo, Du Yuhai, Liu Yang, Wang Yi, Ma Xinghua, Zhang Yuqin, Zhang Riqiang. Effects of Transplanting Date and Mode on Growth, Development, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2021, 37(2): 87-95.
[8] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[9] Huang Dan, Yang Fuwen, Liu Lin, Wang Yue, He Guoqiang, Wang Hongrui, Sun Guangyu, Ao Hong. Effects of Nitrogen and Nitrogen Forms on Photosynthetic Fluorescence Parameters of Chlorophyll in Flue-Cured Tobacco Leaves [J]. Crops, 2021, 37(1): 150-159.
[10] Zhou Jiang, Xie Yizhang, Xiang Ping'an. Emergy Analysis of Inputs and Outputs of Major Field Crop Ecosystems in Hunan Province [J]. Crops, 2021, 37(1): 175-181.
[11] Li Diqin, Wang Qing, Hu Yajie, Wang Yan, Wang Yanni, Zhong Yi, Liu Minghui, Ding Chunxia. Study on Tolerance of Xiangyan 5 to Cadmium in Tobacco-Growing Soil [J]. Crops, 2021, 37(1): 182-186.
[12] Guo Xiaoheng, Wei Shuoguo, Wang Xiaoli, Xu Rui, Han Dan, Xu Zicheng. Effects of Different Types of Mulch Film and Irrigation Methods at Seedling Stage on Growth and Development of Tobacco in Xiangyang Mountain Area [J]. Crops, 2020, 36(5): 154-163.
[13] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[14] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[15] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!