Crops ›› 2025, Vol. 41 ›› Issue (2): 1-8.doi: 10.16035/j.issn.1001-7283.2025.02.001

    Next Articles

Research Progress on Germplasm Resources and Multi-Omics of Oryza officinalis

Jiang Hui1(), Zhong Qiaofang2, Yin Fuyou2, Li Jinlu2, Liu Li2, Zhang Yun2, Wang Bo2, Jiang Cong2, Cheng Zaiquan2, Zhang Hui1(), Xiao Suqin2()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, Yunnan, China
  • Received:2024-04-09 Revised:2024-05-15 Online:2025-04-15 Published:2025-04-16

Abstract:

Oryza officinalis possesses a rich genetic diversity and contains a multitude of superior genes, making it an essential component of the rice genetic resources. Compared to other wild rices, research in germplasm resources and multi-omics of O.officinalis has lagged behind. This article aims to provide a reference for the conservation and breeding research of O.officinalis resources. It reviewed the current status and progress in the genetics of O.officinalis from four aspects: germplasm resources, genomic studies, transcriptomic research, and proteomic analysis. Furthermore, it offered a perspective on future research directions in this field.

Key words: Oryza officinalis, Germplasm resources, Genomics, Transcriptomics, Proteomics

Table 1

Genomic characteristics of O.officinalis"

项目
Item
药用野生稻第3染色体短臂
Chromosome 3 short arm of O.officinalis
药用野生稻v1.0
O.officinalis v1.0
大小Size (Mb) 26.2 584.1
无间隔长度Gapless length (Mb) 26.1 583.2
染色体数目Number of chromosomes 1 12
Scaffold N50 (Mb) 26.2 49.5
Contig N50 (kb) 71 367.6
GC含量GC content (%) 44.5 44
测序深度Sequencing depth 8.0x 60.0x
测序手段Sequencing method Sanger Illumina HiSeq2500和Pacific Bio RSII
登录号Accession number GCA_000717455.1 GCA_008326285.1
[1] 王琳, 戴陆园, 吴丽华, 等. 云南三种野生稻原生境植物种群的调查及比较分析. 中国水稻科学, 2006, 20(1):47-52.
[2] 康公平, 徐国云, 陈志, 等. 茶陵普通野生稻光合特性研究. 作物学报, 2007, 33(9):1558-1562.
[3] 李定琴, 陈玲, 李维蛟, 等. 云南3种野生稻中抗白叶枯病基因的鉴定. 作物学报, 2015, 41(3):386-393.
[4] 国务院办公厅. 国家林业局、农业部令(第4号)国家重点保护野生植物名录(第一批)2000年第13号国务院公报.(1999-09-04)[2024-04-01]. https://www.gov.cn/gongbao/content/2000/content_60072.html.
[5] 中华人民共和国生态环境部. 关于发布《中国生物多样性红色名录-高等植物卷》的公告. (2013-09-02)[2024-04-01]. https://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.html.
[6] 范芝兰, 陈文丰, 陈雨, 等. 广东省药用野生稻的调查收集与保护. 植物遗传资源学报, 2022, 23(2):368-375.
doi: 10.13430/j.cnki.jpgr.20210831004
[7] 王玲仙, 王波, 陈越, 等. 云南药用野生稻幼穗离体培养研究. 中国稻米, 2020, 26(2):49-53.
doi: 10.3969/j.issn.1006-8082.2020.02.012
[8] 王玲仙, 陈玲, 陈越, 等. 云南药用野生稻快繁苗在育种中的利用研究. 辽宁农业科学, 2019(5):7-11.
[9] 王淑雅, 雷凌云, 李金璐, 等. 云南药用野生稻抗稻瘟病鉴定与评价. 分子植物育种,(2023-12-06)[2024-04-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20231206.1337.014.html.
[10] Aggarwal R, Brar D, Nandi S, et al. Phylogenetic relationships among Oryza species revealed by AFLP markers. Theoretical and Applied Genetics, 1999, 98(8):1320-1328.
[11] Joshi S, Gupta V, Aggarwal R, et al. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical and Applied Genetics, 2000, 100(8):1311-1320.
[12] 郑景生, 陈良兵, 符文英, 等. 野生稻不同基因组的SSR多样性分析. 分子植物育种, 2004, 2(1):25-33.
[13] 赵红敬, 许瑾, 高必达, 等. 基于SNP位点快速鉴定药用、斑点野生稻的dCAPS标记体系的建立. 分子植物育种, 2011, 9(2):169-173.
[14] 谭光轩. 药用野生稻重要基因的转移与定位. 武汉:武汉大学, 2003.
[15] 齐兰, 王效宁, 张吉贞, 等. 利用SRAP标记研究海南野生稻的遗传多样性与遗传分化. 植物遗传资源学报, 2013, 14(3):402-406.
doi: 10.13430/j.cnki.jpgr.2013.03.006
[16] 陈成斌, 黄娟, 徐志健, 等. 广西药用野生稻遗传多样性的分子评价. 中国农学通报, 2002, 18(3):13-16,29.
[17] Gao L Z. Microsatellite variation within and among populations of Oryza officinalis (Poaceae), an endangered wild rice from China. Molecular Ecology, 2005, 14(14):4287-4297.
[18] 王玉微. 广西药用野生稻的安全保护研究. 武汉:华中农业大学, 2005.
[19] 苏龙, 徐志健, 乔卫华, 等. 广西药用野生稻遗传多样性分析及SSR引物数量对遗传多样性结果的影响研究. 植物遗传资源学报, 2017, 18(4):603-610.
[20] 孙希平, 杨庆文, 李润植, 等. 海南三种野生稻遗传多样性的比较研究. 作物学报, 2007, 33(7):1100-1107.
[21] 梁肖仍, 金科, 龙章德, 等. 药用野生稻抗褐飞虱基因的RAPD标记研究. 广西植物, 2010, 30(6):865-868.
[22] 张富铁, 庄延, 杨之帆, 等. 药用野生稻应答稻飞虱取食过程中基因表达的研究. 植物科学学报, 2005, 23(1):1-6.
[23] 李霞, 宁顺斌, 金危危, 等. 水稻Pib基因及其连锁RFLP标记在栽培稻、药用野生稻和玉米中的比较物理定位. 植物学报, 2002, 44(1):49-54.
[24] Jena K K, Khush G S, Kochert G. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. Genome, 1994, 37(3):382-389.
pmid: 7913453
[25] Hirabayashi H, Sasaki K, Kambe T, et al. qEMF3,a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of Experimental Botany, 2014, 66(5):1227-1236.
[26] Huang Z, He G, Shu L, et al. Identification and mapping of two brown planthopper resistance genes in rice. Theoretical and Applied Genetics, 2001, 102(6/7):929-934.
[27] 钟代彬, 罗利军, 郭龙彪, 等. 栽野杂交转移药用野生稻抗褐飞虱基因. 西南农业学报, 1997, 10(2):6-10.
[28] 曹孟良. 全基因组基因嵌入突变体库用于发掘野生稻有用基因及超级杂交稻分子育种的策略. 分子植物育种, 2005, 3(6):117-124.
[29] Liu Y, Shirano G, Fukaki H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation- competent artificial chromosome vector accelerates positional cloning. Proceedings of the National Academy of Sciences of the United States of America, 1999,96:6535-6540.
[30] 侯思名, 张薇, 翟书华, 等. 云南药用野生稻BIBAC文库的构建及分析. 湖南农业大学学报(自然科学版), 2011, 37(1):17-21.
[31] 阿新祥, 吴成军, 鄢波, 等. 云南药用野生稻核基因组细菌人工染色体(BAC)文库的构建与分析. 植物生理学报, 2005, 41(1):70-72.
[32] 潘小芬. 基于新型TAC载体的药用野生稻文库构建与性能分析. 广州:华南农业大学, 2006.
[33] 张欢欢, 刘蕊, 郭海滨, 等. 药用野生稻有利基因发掘与利用研究进展. 中国农学通报, 2009, 25(19):42-45.
[34] Shcherban A B, Vaughan D A, Tomooka N, et al. Diversity in the integrase coding domain of a gypsy-like retrotransposon among wild relatives of rice in the Oryza officinalis complex. Genetica, 2000, 110(1):43-53.
pmid: 11519874
[35] Shenton M, Kobayashi M, Terashima S, et al. Evolution and diversity of the wild rice Oryza officinalis complex, across continents, genome types, and ploidy levels. Genome Biology and Evolution, 2020, 12(4):413-428.
doi: 10.1093/gbe/evaa037 pmid: 32125373
[36] Zhang L B, Ge S. Multilocus analysis of nucleotide variation and speciation in Oryza officinalis and its close relatives. Molecular Biology and Evolution, 2023, 24(3):769-783.
[37] Reddy A S, Kiefer-Meyer M C, Delseny M. Characterization of new variants of a satellite DNA from Oryza officinalis, specific for the CC genome of wild rice. Genome, 1993, 36(4):750-761.
pmid: 7916734
[38] 包颖, 杜家潇, 景翔, 等. 药用野生稻叶中淀粉合成酶基因家族的序列分化和特异表达. 植物学报, 2015, 50(6):683-690.
doi: 10.11983/CBB14147
[39] 景翔. 药用野生稻中淀粉合成酶基因家族的进化. 曲阜:曲阜师范大学, 2023.
[40] 马亢. 水稻VDAC和ANT基因家族表达研究. 武汉:中南民族大学, 2010.
[41] Bao Y, Xu S, Jing X, et al. De Novo assembly and characterization of Oryza officinalis leaf transcriptome by using RNA-Seq. Biomed Research International, 2015,2015:982065.
[42] He B, Gu Y H, Tao X, et al. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to identify disease-resistance genes. International Journal of Molecular Sciences, 2015, 16 (12):29482-29495.
[43] Kitazumi A, Pabuayon I C M, Ohyanagi H, et al. Potential of Oryza officinalis to augment the cold tolerance genetic mechanisms of Oryza sativa by network complementation. Scientific Reports, 2018,8:16346.
[44] 夏昌选, 戴双凤, 谢海媚, 等. 基于RNA-seq数据发掘药用野生稻MYB转录因子家族抗旱基因// 广东省遗传学会第九届代表大会暨学术研讨会, 2023.
[45] Liu R, Zhang H H, Chen Z X, et al. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation- competent artificial chromosome clone. Genetics and Molecular Research, 2015, 14(4):13667.
doi: 10.4238/2015.October.28.29 pmid: 26535682
[46] 戴双凤, 谢海媚, 夏昌选, 等. 药用野生稻bZIP转录因子家族抗旱有利基因的挖掘// 广东省遗传学会代表大会暨学术研讨会, 2014.
[47] 谢海媚, 戴双凤, 夏昌选, 等. 药用野生稻NAC转录因子基因的克隆及其功能研究// 广东省遗传学会第九届代表大会暨学术研讨会论文及摘要汇编, 2014.
[48] Jiang C, Shen Q J, Wang B, et al. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress. PLoS ONE, 2017, 12(11):e0188742.
[49] Zhang X Y, Yin F Y, Xiao S Q, et al. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC Plant Biology, 2019, 19(1):30.
doi: 10.1186/s12870-018-1622-9 pmid: 30658570
[50] Bao Y, Ge S. Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence date. Plant Systematics and Evolution, 2004, 249(2):55-66.
[1] Lu Jing, Yu Bo, Jiang Mi, Peng Lianxin, Ren Yuanhang, Wu Qi. Assessment of Genetic Diversity in 58 Germplasm Resources of Highland Barley [J]. Crops, 2025, 41(2): 20-28.
[2] Yan Qunxiang, Pang Yuhui, Hong Zhuangzhuang, Bi Junge, Wang Chunping. Genetic Diversity Analysis and Specificity Evaluation of Main Traits of 141 Wheat Germplasm Resources at Domestic and Foreign [J]. Crops, 2025, 41(1): 26-34.
[3] Zhang Jie, Jia Bing, Cheng Ruibao, Yang Wei, Liu Ying, Zhang Liyuan, Wen Yahui, Dong Chunhao, Wang Zhenpu, Qi Mingyu, Zhang Qingyan, Zhao Min, Li Zhiguang. Phenotypic Diversity Analysis of Proso Millet Germplasm Resources in the Northeast Plain Ecological Region [J]. Crops, 2025, 41(1): 76-82.
[4] Zhang Lili, Li Zhenyu, Chen Guanghong, Wang Shaolin, Xia Ming, Zheng Yingjie, Wang Ying, Wang Tong, Mao Ting, Yu Yahui. Analysis and Evaluation of Nutrient Composition of Special Rice Germplasm Resources Based on the Principal Component Analysis [J]. Crops, 2024, 40(5): 40-47.
[5] Wang Lu, Deng Jie, Zhang Ze, Zhao Mengwei, Che Xinyang, Wang Guangyi, Guo Xu, Zhang Haiyang, He Lin, Weng Jianfeng, Xu Jingyu. Identification and Evaluation of Drought Tolerant Germplasm Resources at Seedling Stage of Maize under PEG Stress [J]. Crops, 2024, 40(4): 43-53.
[6] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[7] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[8] Wang Yueying, Fan Baojie, Cao Zhimin, Wang Yan, Su Qiuzhu, Zhang Zhixiao, Wang Shen, Shi Huiying, Shen Yingchao, Cheng Xuzhen, Liu Changyou, Tian Jing. Genetic Diversity Analysis of Landraces and Improved Varieties of Mung Bean by EST-SSR Markers [J]. Crops, 2024, 40(1): 73-79.
[9] Qu Zhihua, Zhang Lili, Hu Yang, Qiao Haiming, Li Feng, Bai Wei. Agronomic Characteristics Evaluation on Introduced Flax Germplasm Resources [J]. Crops, 2023, 39(6): 47-53.
[10] Yang Enze, Wang Shuyan, Liu Ruixiang, Shi Fengyuan, Zhang Jinhao, Li Jiana, Li Zhiwei, Guo Zhanbin. Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP [J]. Crops, 2023, 39(6): 79-85.
[11] Gao Zhanning, Yang Yongqian, Wang Shujie, Feng Hui, Xue Zhenggang. Comprehensive Evaluation of 143 Barley Germplasm Resources [J]. Crops, 2023, 39(5): 59-65.
[12] Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37.
[13] Huang Guibin, Guan Yaobing, Niu Yongqi, Zhou Lilei, Zhao Yongfeng. Comprehensive Evaluation of 12 Major Agronomic Traits of 103 Chickpea Germplasm Resources [J]. Crops, 2023, 39(1): 6-13.
[14] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[15] Qi Guangxun, Dong Lingchao, Zhang Wei, Yuan Cuiping, Liu Xiaodong, Wang Yingnan, Dong Yingshan, Wang Yumin, Zhao Hongkun. Evaluation of Resistance to Soybean Mosaic Virus Strain 3 (SMV3) in Foreign Soybean Germplasm Resources [J]. Crops, 2022, 38(6): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!