Crops ›› 2025, Vol. 41 ›› Issue (2): 9-13.doi: 10.16035/j.issn.1001-7283.2025.02.002

Previous Articles     Next Articles

Research Progress on Fertility Restoration of Photoperiod- Thermo-Sensitive Male-Sterile Wheat

Lou Hongyao1(), Li Hanlin1,2, Qin Zhilie1, Qumanguli∙Kuerban 3, Zhu Minghui3, Liu Changwen3, Zhang Shengquan1()   

  1. 1Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing 100097, China
    2College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    3Kashgar Agricultural Technology Promotion Center, Kashgar 844099, Xinjiang, China
  • Received:2024-04-08 Revised:2024-06-12 Online:2025-04-15 Published:2025-04-16

Abstract:

The utilization of heterosis is an important way to greatly improve the comprehensive production capacity of wheat and is of great significance to ensure food security. Given the cost-effectiveness of seed production, diverse restoration sources, and the ease of accessing heterosis combinations, the adoption of heterosis through photoperiod-thermo-sensitive male-sterile wheat has gradually emerged as the prevailing technology in hybrid wheat research. Excavating the restoration reservoir of photoperiod-thermo-sensitive male- sterile wheat and achieving hybrid vigor restoration stands as a critical scientific question in the realm of two-line hybrid wheat. This article deliberates on the fertility rejuvenation of photoperiod-thermo-sensitive male-sterile wheat, its influencing factors, and future prospects. The purpose of this discussion is to provide information to promote the use of hybrid wheat.

Key words: Wheat, Photoperiod-thermo-sensitive male sterility, Fertility restoration, Heredity, Environment

[1] 陈晓杰, 杨保安, 范家霖, 等. 小麦杂种优势利用研究进展. 种子, 2022, 41(1):8.
[2] 赵昌平. 中国二系杂交小麦研究进展与展望. 科学通报, 2022, 67(26):3119-3128.
[3] Li H, Li S, Abdelkhalik S, et al. Development of thermo-photo sensitive genic male sterile lines in wheat using doubled haploid breeding. BMC Plant Biology, 2020,20:1-10.
[4] 赵昌平.中国杂交小麦研究进展//第十五次中国小麦栽培科学学术研讨会论文集. 北京杂交小麦工程技术研究中心, 2012:592-593.
[5] Ter Steeg E M S, Struik P C, Visser R G F, et al. Crucial factors for the feasibility of commercial hybrid breeding in food crops. Nature Plants, 2022,8:463-473.
[6] Singh S P, Srivastava R, Kumar J. Male sterility systems in wheat and opportunities for hybrid wheat development. Acta Physiologiae Plantarum, 2015,37:1-13.
[7] 张风廷. 光温敏核雄性不育小麦的育性转换特点及恢复性研究. 北京: 中国农业科学院, 2004.
[8] 付庆云, 曹银萍, 李友勇. 小麦光温敏雄性不育的研究和利用进展. 麦类作物学报, 2010, 30(3):576-580.
[9] 董普辉, 何蓓如, 王宏娟, 等. 一种普通小麦光温敏不育系的发现及初步研究. 中国农学通报, 2009, 25(23):215-219.
[10] 陶军, 李生荣, 周强, 等. 中国西南温光型两系杂交小麦研究进展. 中国农学通报, 2017, 33(32):1-8.
doi: 10.11924/j.issn.1000-6850.casb16110032
[11] 杨雪桐. 小麦温敏雄性不育系偃展4110S育性转换的机制研究. 杨凌:西北农林科技大学, 2019.
[12] 孙辉, 赵昌平, 岳洁茹, 等. 不同生态环境和日温差对BS型小麦光温敏雄性不育系育性转换和农艺性状的影响. 作物杂志, 2024(3):40-46.
[13] 胡浩然. 小麦温光敏雄性核不育系K64S育性转换规律研究. 昆明:云南农业大学, 2023.
[14] 袁国强, 陶军, 何员江, 等. 杂交小麦研究进展与展望. 四川农业大学学报, 2023, 41(6):973-980.
[15] 李绍祥, 丁明亮, 李宏生, 等. 云南温光敏两系杂交小麦研究进展与思考. 科学通报, 2022, 67(26):3197-3206.
[16] 张胜全, 叶志杰, 任立平, 等. “十五”以来我国杂交小麦审定品种分析. 作物杂志, 2022(1):38-43.
[17] 阮仁武, 杨宇衡, 易泽林, 等. 杂交小麦新品种西南11号的选育. 中国种业, 2022(8):122-124.
[18] 曹光宇, 单天雷, 刘江, 等. 杂交小麦制种技术及除草剂在杂交制种提纯中的应用进展. 科学通报, 2022, 67(26):3175-3184.
[19] Murai K. Factors responsible for levels of male sterility in photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines. Euphytica, 2001,117:111-116.
[20] Li H S, Ding M L, Gu J, et al. Preliminary study on inheritance of stigma exertion in wheat thermo-photo sensitive genic male sterile line. Southwest China Journal of Agricultural Sciences, 2014, 27(6):2726-2728.
[21] Li Y F, Zhao C P, Zhang F T. et al. Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica, 2006,151:207-213.
[22] Zhang J K, Yu G D, Zong X F, et al. Effect of light intensity on fertility alternation of thermo-photo-sensitive genic male sterile wheat. Journal of Plant Genetic Resources, 2011, 12(2):301-306.
doi: 10.13430/j.cnki.jpgr.2011.02.021
[23] Chen X D, Sun D F, Rong D F, et al. A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.). Journal of Zhejiang University Science B, 2011,12:943.
[24] 聂迎彬, 孔德真, 崔凤娟, 等. 小麦AL型细胞质雄性不育系异交结实率的研究. 北方农业学报, 2018, 46(3):1-6.
[25] 董普辉, 朱先玉, 程亚丹, 等. 小麦T型细胞质雄性不育系T9023A的选育及育性恢复研究. 河南农业科学, 2017, 46(3):25-28.
[26] 姚盟, 叶佳丽, 杨智全, 等. 5种细胞质雄性不育小麦败育的生物学特性及育性恢复. 麦类作物学报, 2015, 35(12):1676-1684.
[27] 王震. BNS小麦温敏雄性不育系恢复系筛选及遗传表达分析. 杨凌:西北农林科技大学, 2014.
[28] Sun Y Y, Liu X, Zhang S Q, et al. Wheat cultivars at different decades vary widely in grain-filling characteristics in Shaanxi Province, China. Cereal Research Communications, 2018, 46(3):533-544.
[29] Melonek J, Duarte J, Martin J, et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nature Communications, 2021, 12(1):1036.
doi: 10.1038/s41467-021-21225-0 pmid: 33589621
[30] 赵双锁, 刘晓丹, 关丽云. 不同年代小麦育成种质的遗传变异比较分析. 河北农业科学, 2022, 26(3):64-71.
[31] Martínez L A, Rubio O P, Ponce A L, et al. A decade of temperature variation and agronomic traits of durum wheat (Triticum durum L.). Arabian Journal of Geosciences, 2022, 15 (8):741.
[32] 文祥朋, 任伟, 孙克刚, 等. 不同穗型小麦小花发育过程中幼穗内同化物分配与穗粒数的关系. 江西农业学报, 2017, 29 (8):11-14.
[33] 刘合芹. 不同年代推出的冬小麦农艺性状以及光合生理生态特性. 北京: 中国科学院研究生院(植物研究所), 2002.
[34] Abdelkhalık S, Ding M L, Gu J, et al. Analyzing combining ability and heterosis of thermo-photo sensitive genic male sterile wheat lines for hybrid development. Turkish Journal of Field Crops, 2019, 24(1):98-105.
[35] 谭昌华, 余国东, 李伯群, 等. C49S温光敏核不育小麦杂种F1代的育性恢复. 西南农业学报, 1999(3):26-29.
[36] 王晓楠. 春小麦穗粒数改良潜力的研究. 哈尔滨:东北农业大学, 2007.
[37] Murai K, Ohta H, Kurushima M. et al. Photoperiod-sensitive cytoplasmic male sterile elite lines for hybrid wheat breeding, showing high cross-pollination fertility under long-day conditions. Euphytica, 2016,212:313-322.
[38] Chinoy J J. Effect of vernalization and photoperiodic treatments on growth and development of wheat. Nature, 1950,165:882-883.
[39] Yuan S, Bai J, Guo H, et al. QTL mapping of male sterility-related traits in a photoperiod and temperature-sensitive genic male sterile wheat line BS366. Plant Breeding, 2020,139:498-507.
[40] 孙辉, 张立平, 陈兆波, 等. BS型小麦光温敏雄性不育系光合特性研究. 麦类作物学报, 2020, 40(1):86-95.
[41] 孙辉, 张立平, 侯起岭, 等. 人工控制条件下BS型小麦光温敏雄性不育系育性与光合特性的关系研究. 作物杂志, 2021 (1):7-15.
[42] 郭艳萍. 粘类小麦雄性不育系育性基因分布区及其育性恢复性研究. 杨凌:西北农林科技大学, 2006.
[43] 张新玲, 石书兵, 童婷, 等. 不同环境与播期对小麦雌性不育材料结实率影响的研究. 新疆农业科学, 2013, 50(3):417-421.
[44] 苑少华, 段文静, 白建芳, 等. F型小麦雄性不育系恢复性研究. 麦类作物学报, 2018, 38(6):654-660.
[45] 高翔. 小麦K型不育系的育性恢复性能及环境稳定性表现. 郑州:河南农业大学, 2006.
[46] 权威. 光温敏核雄性不育小麦BS210育性转换规律的研究. 呼和浩特:内蒙古农业大学, 2007.
[47] 姚盟. 5种细胞质雄性不育小麦败育的生物学特性与育性恢复. 杨凌:西北农林科技大学, 2016.
[48] 严美玲, 郑建鹏, 殷岩, 等. 不同水分处理对小麦光合特性及灌浆特性的影响. 山东农业科学, 2022, 54(6):55-59.
[49] 路永强, 刘玉秀, 周发宝, 等. 不同水分供应对小麦氮素积累、分配和产量的影响. 西北农业学报, 2019, 28(11):1760-1768.
[50] 柳芳, 王传海, 申双和, 等. 土壤水分对小麦开花及结实的影响. 南京气象学院学报, 2002, 25(5):671-676.
[51] 张建奎. 重庆温光敏核雄不育小麦育性转换规律及不育机理研究. 重庆:西南大学, 2006.
[52] 周美兰, 茹振刚, 骆叶青, 等. 两系小麦不育系BNS雄性育性的转换. 核农学报, 2010, 24(5):887-894.
[53] 朱元刚. 推迟播期对冬小麦穗花发育的调控效应及其生理基础研究. 泰安:山东农业大学, 2019.
[54] 李会敏, 赵明辉, 王广才, 等. 冬小麦杂种优势表现及分析. 河北农业科学, 2011, 15(9):50-53.
[55] Gupta P K, Balyan H S, Gahlaut V, et al. Hybrid wheat: past, present and future. Theoretical and Applied Genetics, 2019,132:2463-2483.
[56] 刘素霞. T型小麦杂种优势在盐碱地表现的分析:Ⅱ盐碱地T型小麦子粒产量杂种优势形成的遗传分析. 河南农业大学学报, 1993, 27(4):366-372.
[57] 张风廷, 赵昌平, 秦志列, 等. 耐盐碱杂交小麦新品种—京麦189. 麦类作物学报, 2023, 43(8):1080.
[1] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[2] Zhao Yuanling, Tan Weiwei, Liu Zhaojun, Li Tie, Li Dongmei, Sun Minglong, Gao Fengmei, Wang Yongbin. Cultivation of New Wheat Lines with Low Lipoxygenase (LOX) Activity and Storage Tolerance by Anther Culture Technology [J]. Crops, 2025, 41(2): 40-46.
[3] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[4] Mi Dongming, Zhou Zuoyan, Zhang Xiaoyan, Fan Zhenjie, Sun Peijie, Huang Xiao, Ren Aixia, Sun Min, Ren Yongkang. Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat [J]. Crops, 2025, 41(2): 155-161.
[5] Liu Peiyao, Ran Liping, Yang Jiaqing, Wang Haibo, Xiong Fei, Yu Xurun. Research Progress on Morphogenesis, Physiological Characteristics, and Its External Influencing Factors in Wheat Spike [J]. Crops, 2025, 41(1): 1-9.
[6] Yang Dandan, Han Xue, Kong Xinxin, Zhao Guoxuan, Su Yazhong, Zhao Pengfei, Jin Jianmeng, Zhao Guojian. Identification of Osmotic Stress Resistance and Analysis of Related Agronomic Traits of 71 Winter Wheat Seedlings [J]. Crops, 2025, 41(1): 243-249.
[7] Yan Qunxiang, Pang Yuhui, Hong Zhuangzhuang, Bi Junge, Wang Chunping. Genetic Diversity Analysis and Specificity Evaluation of Main Traits of 141 Wheat Germplasm Resources at Domestic and Foreign [J]. Crops, 2025, 41(1): 26-34.
[8] Chen Xingyu, Sun Xueying, Zhang Li, Sun Jiangrong, Guo Jiangyu. Breeding and Application Value of Purple Leaf Red Flower Common Buckwheat “Youtian Purple Red” [J]. Crops, 2025, 41(1): 260-262.
[9] Xiang Dabing, Ye Xueling, Fan Yu, Liu Changying, Wan Yan, Wu Qi, Wu Xiaoyong, Peng Lianxin, Zhao Gang, Zou Liang. Breeding and Cultivation Technology of New Tartary Buckwheat Variety Chengku No.2 [J]. Crops, 2024, 40(6): 249-253.
[10] Liu Akang, Li Li, Chang Xuhong, Wang Demei, Wang Yanjie, Liu Xiwei, Yang Yushuang, Zhao Guangcai. Key Technology for Autumn Sowing and Pre-Winter Management of Winter Wheat [J]. Crops, 2024, 40(6): 254-256.
[11] Fan Ming, Zhang Shuangxi, Chen Jia, Zhang Jiao, Li Hongxia. Analysis of the Traits Related to Lodging-Resistance and Construction of a Comprehensive Evaluation System for Spring Wheat Varieties in Ningxia [J]. Crops, 2024, 40(6): 39-46.
[12] Han Xue, Yang Dandan, Kong Xinxin, Zhao Pengfei, Jin Jianmeng, Su Yazhong, Zhao Guoxuan, Zhao Guojian. Genetic Diversity Analysis of Quality Traits and Gliadin in 200 Wheat Germplasm Resources [J]. Crops, 2024, 40(6): 61-70.
[13] Xu Lang, Zhang Jibin, Shi Weibiao, Ye Tao, Chen Bo, Lü Qingyin, Wang Yu, Huang Zhian, Shen Rui, Chen Zhiyuan. Investigation and Analysis of Tartary Buckwheat and Planting Soil Resources in Different Producing Areas [J]. Crops, 2024, 40(6): 78-83.
[14] Lu Jiahui, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Reduced Nitrogen Application on Nitrogen Utilization and Grain Quality in Different Organs of Spring Wheat [J]. Crops, 2024, 40(5): 220-227.
[15] Zhang Lusheng, Chang Huihong, Zhang Yufan, Han Xiaowei, Zhang Baoshuai, Wang Xiaomeng, Wang Ziqiang, Tian Xuehui. Effects of Wheat High-Low Border Cultivation Pattern on the Occurrence of Diseases, Pests and Weeds [J]. Crops, 2024, 40(5): 235-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!