Crops ›› 2025, Vol. 41 ›› Issue (2): 29-39.doi: 10.16035/j.issn.1001-7283.2025.02.005
Previous Articles Next Articles
Li Kunjie1,2(), Liu Nian1,2(
), Ding Lei1,2, Zhu Yan1,2, Meng Daqing1,2, Fan Qixin1,2, Li Yingchun1,2, Chen Jun1,2
[1] | 施文华, 严茂林, 刘昌勇, 等. 我国油料进口贸易的结构特征及对策分析. 中国油脂, 2023, 48(8):1-8. |
[2] | 何微, 李俊, 王晓梅, 等. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2):1-7. |
[3] | 王汉中. 中国油菜品种改良的中长期发展战略. 中国油料作物学报, 2004, 26(3):99-102. |
[4] |
Harwood J L, Guschina I A. Regulation of lipid synthesis in oil crops. FEBS Letters, 2013, 587(13):2079-2081.
doi: 10.1016/j.febslet.2013.05.018 pmid: 23684640 |
[5] |
Gibellini F, Smith T K. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 2010, 62(6):414-428.
doi: 10.1002/iub.337 pmid: 20503434 |
[6] | Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 2016,67:179-206. |
[7] | Körbes A P, Kulcheski R, Margis R, et al. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 2016,96:55-69. |
[8] | Leung D W. The structure and functions of human lysophosphatidic acid acyltransferases. Frontiers in Bioscience, 2001,6:944-953. |
[9] |
Maisonneuve S, Bessoule J J, Lessire R, et al. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiology, 2010, 152(2):670-684.
doi: 10.1104/pp.109.148247 pmid: 19965969 |
[10] | 张军平, 江木兰, 龚阳敏, 等. 三角褐指藻LPAAT基因在酵母中表达对脂肪酸的影响. 中国油料作物学报, 2012, 34(5):483-488. |
[11] | Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiology, 2004, 134(3):1206-1216. |
[12] |
Wang N H, Ma J J, Pei W F, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics, 2017, 18(1):218.
doi: 10.1186/s12864-017-3594-9 pmid: 28249560 |
[13] | 陈四龙. 花生油脂合成相关基因的鉴定与功能研究. 北京: 中国农业科学院, 2013. |
[14] | 周雅莉, 黄旭升, 郝月茹, 等. 紫苏溶血磷脂酸酰基转移酶基因的克隆与功能分析. 生物工程学报, 2022, 38(8):3014-3028. |
[15] | Song J M, Guan Z, Hu J, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6(1):34-45. |
[16] | Lian Z, Nguyen C D, Liu L, et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnology Journal, 2022, 20(8):1622-1635. |
[17] |
Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21):2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
[18] |
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[19] | Gu Z L, Cavalcanti A, Chen F C, et al. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology and Evolution, 2002, 19(3):256-262. |
[20] |
Chen C C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[22] | Mishra P, Singh U, Pandey C M, et al. Application of student's t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 2019, 22(4):407-411. |
[23] | Taylor J S, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annual Review of Genetics, 2004,38:615-643. |
[24] | Agarwal A K, Sukumaran S, Bartz R, et al. Functional characterization of human 1-acylglycerol-3-phosphate-O- acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. The Journal of Endocrinology, 2007, 193(3):445-457. |
[25] | Wang P D, Xiong X J, Zhang X B, et al. A review of erucic acid production in brassicaceae oilseeds: progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science, 2022,13:899076. |
[26] |
Bradley R M, Duncan R E. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Current Opinion in Lipidology, 2018, 29(2):110-115.
doi: 10.1097/MOL.0000000000000492 pmid: 29373329 |
[27] | Rao S S, Hildebrand D. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids, 2009, 44(10):945-951. |
[28] | 郝月茹. 紫苏溶血磷脂酸酰基转移酶基因(PfLPATs)的鉴定及功能分析. 太原:山西农业大学, 2023. |
[29] |
Bin Y, Wakao S, Fan J L, et al. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant and Cell Physiology, 2004, 45(5):503-510.
pmid: 15169931 |
[30] | Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26):15682-15687. |
[31] | Kong H Z, Landherr L L, Frohlich M W, et al. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. The Plant Journal, 2007, 50(5):873-885. |
[32] | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004,4:10. |
[33] | Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. The Plant Cell, 2005, 17(4):1073-1089. |
[34] | Kim H U, Vijayan P, Carlsson A S, et al. A mutation in the LPAT1 gene suppresses the sensitivity of fab 1 plants to low temperature. Plant Physiology, 2010, 153(3):1135-1143. |
[35] | Hishikawa D, Shindou H, Kobayashi S, et al. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8):2830-2835. |
[36] | Schmidt J A, Brown W J. Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. The Journal of Cell Biology, 2009, 186(2):211-218. |
[37] | 王芹. 甘蓝型油菜种子发育进程中油脂积累差异及关键基因表达. 重庆:西南大学, 2022. |
[1] | Zou Xiaoyun, Guan Mei, Guan Chunyun. Studies on Plant Morphological and Physiological Characteristics of High Nitrogen Absorption in Brassica napus L. [J]. Crops, 2022, 38(5): 97-103. |
[2] | Lin Xiaoyang, Du Dezhi, Liu Haidong, Li Jun. Core Collection Construction of Extra-Early Restorer Lines in Spring Brassica napus L. [J]. Crops, 2022, 38(1): 31-37. |
[3] | Lü Weisheng, Xiao Xiaojun, Huang Tianbao, Xiao Guobin, Li Yazhen, Xiao Fuliang, Han Depeng, Zheng Wei. Application Effect of Slow-Released Formulated Fertilizer on Oilseed Rape (Brassica napus L.) under Late Sowing Rice [J]. Crops, 2020, 36(6): 143-150. |
[4] | Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65. |
|