作物杂志,2023, 第2期: 106–114 doi: 10.16035/j.issn.1001-7283.2023.02.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

棉花早、中熟品系营养器官碳氮含量变化的差异及与干物质积累的相关性

王艳丹(), 高欣, 彭金剑, 汤飞宇()   

  1. 江西农业大学农学院/作物生理生态与遗传育种教育部重点实验室,330045,江西南昌
  • 收稿日期:2021-08-06 修回日期:2021-10-15 出版日期:2023-04-15 发布日期:2023-04-11
  • 通讯作者: 汤飞宇,主要从事棉花栽培生理与育种研究,E-mail:fytangcau@163.com
  • 作者简介:王艳丹,主要从事棉花栽培研究,E-mail:1511753359@qq.com
  • 基金资助:
    国家自然科学基金(31960385);国家自然科学基金(31560364)

Comparison of Carbohydrate and Nitrogen Contents in Vegetative Organs between Early- and Middle-Maturing Cotton Lines and the Relationships to Dry Matter Accumulation

Wang Yandan(), Gao Xin, Peng Jinjian, Tang Feiyu()   

  1. College of Agronomy, Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, Jiangxi, China
  • Received:2021-08-06 Revised:2021-10-15 Online:2023-04-15 Published:2023-04-11

摘要:

为探究不同生育期棉花品种的干物质积累及产量与其碳氮代谢相关性,采用生育期不同的2个陆地棉近等基因系早熟系4003-10和中熟系4003-6,测定生殖生长阶段蕾期至吐絮期根、茎、叶的全氮、氨基酸、非结构性碳水化合物(己糖、蔗糖和淀粉)含量及棉株各部位生物量,比较2个品系的差异,并分析营养器官含氮量与生物量的相关性。结果表明,4003-6比4003-10具有更大的铃重、衣分及皮棉产量。生殖生长阶段4003-6叶片比4003-10具有较高的全氮、氨基酸、非结构性总碳、淀粉含量及碳氮比,表明前者叶片具有较强的碳氮代谢活性和碳水化合物生产能力;4003-6的根系氨基酸水平高于4003-10,且具有更高的氮素吸收效率。在营养器官中,根系含氮量对棉花植株地上部、根系、营养器官和生殖器官的生物量积累影响最大。早熟系4003-10单株根、茎、叶的含氮量与生殖器官生物量的相关系数均高于中熟系4003-6,表明早熟品系的吸氮能力对产量影响更大。

关键词: 棉花, 全氮, 非结构性碳水化合物, 氨基酸, 碳氮比, 生育期

Abstract:

In order to explore the correlation in dry matter accumulation and yield between cotton cultivars differing in growth period and its carbon and nitrogen metabolism, two near-isogenic cotton lines with different growth period were employed to examine the single plant total nitrogen, amino acid, and nonstructural carbohydrates (hexose, sucrose, and starch) contents in the roots, stems and leaves and the biomass of various plant organs during squaring to boll opening stages. The differences between two lines were compared. The correlation between the nitrogen content and biomass was analyzed. The results showed that 4003-6 exhibited greater boll weight, lint per centage and lint cotton yield than 4003-10. The leaves per plant recorded higher total nitrogen, amino acid, total nonstructural carbohydrate, starch contents and carbon to nitrogen ratio in 4003-6 than in 4003-10 at reproductive growth stage, which means the former expressed greater activities of carbon and nitrogen metabolism and produced more carbohydrates. Greater amino acid content with roots and higher nitrogen uptake efficiency were found in 4003-6 than in 4003-10. Among vegetative organs, root nitrogen contents brought the greatest effects to each of the biomass of shoots, roots, vegetative and reproductive organs. The correlation coefficients between nitrogen content per plant in roots, stems and leaves and reproductive biomass per plant were greater in 4003-10 than in 4003-6, indicating the nitrogen absorbing ability of early maturing line affected yield more than that of middle maturing line.

Key words: Cotton (Gossypium hirsutum L.), Total nitrogen, Nonstructural carbohydrate, Amino acid, Carbon to nitrogen ratio, Growth period

表1

早熟系4003-10与中熟系4003-6产量及其构成因素的表现

年份
Year
品系
Line
株铃数
Bolls per
plant
单铃重
Boll weight
(g)
衣分
Lint percentage
(%)
子指
Seed index
(g)
衣指
Lint index
(g)
子棉产量
Seed cotton yield
(kg/hm2)
皮棉产量
Lint cotton yield
(kg/hm2)
2017 4003-10 38.1a 4.4a 37.2b 10.4a 6.2b 2658.0a 991.0a
4003-6 39.7a 4.7a 39.9a 10.5a 7.0a 2661.4a 1063.6a
2018 4003-10 30.4a 3.9b 39.0b 10.1a 6.5b 2345.9b 913.7b
4003-6 28.5a 4.6a 41.2a 10.1a 7.1a 2737.0a 1126.9a

图1

棉花早熟系4003-10和中熟系4003-6主茎(a,b)、根系(c,d)和叶片(e,f)氮素动态变化 “*”和“**”分别表示P < 0.05和P < 0.01水平上差异显著。下同

图2

棉花早熟系4003-10和中熟系4003-6主茎(a,b)、根系(c,d)和叶片(e,f)氨基酸的动态变化

图3

棉花早熟系4003-10和中熟系4003-6氮素吸收效率的比较

图4

棉花早熟系4003-10和中熟系4003-6主茎(a,b)、根系(c,d)和叶片(e,f)非结构性总碳水化合物含量的动态变化

图5

棉花早熟系4003-10和中熟系4003-6主茎(a,b)、根系(c,d)和叶片(e,f)蔗糖含量的动态变化

图6

棉花早熟系4003-10和中熟系4003-6主茎(a,b)、根系(c,d)和叶片(e,f)淀粉含量的动态变化

图7

棉花早熟系4003-10和中熟系4003-6棉花主茎(a,b)、根系(c,d)和叶片(e,f)碳氮比的变化

表2

棉花品系4003-10和4003-6生殖生长阶段单株水平上根茎叶含氮量与根系、地上部、营养器官及生殖器官生物量的相关性

年份Year 品系Line 变量Variable 根含氮量Root nitrogen content 茎含氮量Stem nitrogen content 叶含氮量Leaf nitrogen content
2017 4003-10 根系生长量 0.961** 0.906** 0.904**
地上部生长量 0.949** 0.906** 0.858**
营养器官生长量 0.971** 0.954** 0.943**
生殖器官生长量 0.875** 0.803** 0.726**
4003-6 根生物量 0.968** 0.917** 0.925**
地上部生长量 0.921** 0.855** 0.864**
营养器官生长量 0.971** 0.935** 0.938**
生殖器官生长量 0.799** 0.691** 0.712**
2018 4003-10 根生物量 0.900** 0.900** 0.643**
地上部生长量 0.927** 0.938** 0.787**
营养器官生长量 0.905** 0.941** 0.760**
生殖器官生长量 0.924** 0.903** 0.772**
4003-6 根生物量 0.911** 0.827** 0.755**
地上部生长量 0.867** 0.848** 0.837**
营养器官生长量 0.872** 0.849** 0.857**
生殖器官生长量 0.851** 0.823** 0.769**
[1] Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 2010, 3(6):973-996.
doi: 10.1093/mp/ssq049 pmid: 20926550
[2] Wang L, Ruan Y L. Shoot-root carbon allocation,sugar signaling and their coupling with nitrogen uptake and assimilation. Functional Plant Biology, 2016, 43(2):105-113.
doi: 10.1071/FP15249 pmid: 32480445
[3] 尹燕东, 魏珉, 邹永洲, 等. CO2施肥对黄瓜幼苗根系发育及氮代谢酶活性的影响. 西北农业学报, 2006, 15(5):191-194,201.
[4] 田婧, 郭世荣, 孙锦, 等. 外源亚精胺对高温胁迫下黄瓜幼苗氮素代谢的影响. 生态学杂志, 2011, 30(10):2197-2202.
[5] 曹蓓蓓, 王仕稳, 齐凌云, 等. 小麦苗期叶片碳氮平衡与低氮诱导的叶片衰老之间的关系. 麦类作物学报, 2017, 37(5):673- 679.
[6] 王仁雷, 魏锦城, 李霞, 等. 氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响. 作物学报, 2001, 27(6):930-934.
[7] Bange M P, Milroy S P. Timing of crop maturity in cotton:impact of dry matter production and partitioning. Field Crops Research, 2000, 68(2):143-155.
doi: 10.1016/S0378-4290(00)00116-7
[8] Pace P F, Cralle H T, Cothren J T, et al. Photosynthate and dry matter partitioning in short- and long-season cotton cultivars. Crop Science, 1999, 39:1065-1069.
doi: 10.2135/cropsci1999.0011183X003900040018x
[9] Gao X, Tang F. The allometry of biomass allocation to various organs in cotton (Gossypium hirsutum L.) depending growth period. Applied Ecology and Environmental Research, 2021, 19(2):1505-1515.
doi: 10.15666/aeer
[10] Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Research, 2004, 87(1):73-87.
doi: 10.1016/j.fcr.2003.09.007
[11] Hikosaka K, Takashima T, Kabeya D, et al. Biomass allocation and leaf chemical defence in defoliated seedlings of Quercus serrata with respect to carbon-nitrogen balance. Annals of Botany, 2005, 95(6):1025-1032.
pmid: 15760913
[12] Araya T, Noguchi K, Terashima I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L.. Journal of Plant Research, 2010, 123(3):371-379.
doi: 10.1007/s10265-009-0279-8
[13] Guo H, Xu B, Wu Y, et al. Allometric partitioning theory versus optimal partitioning theory:the adjustment of biomass allocation and internal C-N balance to shading and nitrogen addition in Fritillaria unibracteata (Liliaceae). Polish Journal of Ecology, 2016, 64(2):189-199.
doi: 10.3161/15052249PJE2016.64.2.004
[14] Groot C, Marcelis L, Boogaard R, et al. Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. Functional Plant Biology, 2002, 29(11):1319-1328.
doi: 10.1071/FP02087 pmid: 32688730
[15] Wang L, Wang J, Liu W, et al. Biomass allocation,compensatory growth and internal C/N balance of Lolium perenne in response to defoliation and light treatments. Polish Journal of Ecology, 2016, 64(4):485-499.
doi: 10.3161/15052249PJE2016.64.4.004
[16] Saarinen T. Internal C:N balance and biomass partitioning of Carexrostrata grown at three levels of nitrogen supply. Canadian Journal of Botany, 1998, 76(5):762-768.
doi: 10.1139/b98-046
[17] Tang F, Wang T, Zhu J. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Research, 2014, 164:98-106.
doi: 10.1016/j.fcr.2014.06.002
[18] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999:127-128.
[19] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006:144-148.
[20] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000:192-194.
[21] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74(3):562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[22] Reddy A R, Reddy K R, Padjung R, et al. Nitrogen nutrition and photosynthesis in leaves of pima cotton. Journal of Plant Nutrition, 1996, 19(5):755-770.
doi: 10.1080/01904169609365158
[23] Barillot R, Chambon C, Andrieu B. CN-wheat,a functional- structural model of carbon and nitrogen metabolism in wheat culms after anthesis. I. Model description. Annals of Botany, 2016, 118:997-1013.
doi: 10.1093/aob/mcw143 pmid: 27497242
[24] Pettigrew W T, McCarty J C, Vaughn K C. Leaf senescence-like characteristics contribute to cotton's premature photosynthetic decline. Photosynthesis Research, 2000, 65(2):187-195.
pmid: 16228485
[25] Taliercio E W, Romano G, Scheffler J, et al. Expression of genes associated with carbohydrate metabolism in cotton stems and roots. BMC Plant Biology, 2009, 9(1):11.
doi: 10.1186/1471-2229-9-11
[26] Dubey R S, Srivastava R K, Pessarakli M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. USA: CEC Press, 2014:453-475.
[27] 张祥, 吕春花, 刘晓飞, 等. 两个彩色棉品种碳氮代谢特征研究. 棉花学报, 2011, 23(1):34-38.
[1] 易翔, 吕新, 张立福, 田敏, 张泽, 范向龙. 基于RF和SPA的无人机高光谱估算棉花叶片全氮含量[J]. 作物杂志, 2023, (2): 245–252
[2] 唐中杰, 谢德意, 许守明, 聂利红, 吕淑平, 王明坤. 2005-2020年转Bt基因棉花抗虫性变化及其与产量性状的相关性分析[J]. 作物杂志, 2023, (2): 77–82
[3] 李文姗, 张俊尧, 唐江华, 徐文修, 徐清华. 艾氟迪不同滴施量对棉花生长发育及产量的影响[J]. 作物杂志, 2023, (1): 158–162
[4] 马春梅, 田阳青, 赵强, 李江余, 吴雪琴. 植物生长调节剂复配对棉花产量的影响[J]. 作物杂志, 2022, (6): 181–185
[5] 徐敏, 金路路, 李瑞春, 孙丽园, 王子胜. 辽河流域棉区棉花化学封顶技术应用研究[J]. 作物杂志, 2022, (5): 201–207
[6] 贾国涛, 张俊岭, 魏壮状, 袁岐山, 王宝林, 王晓瑜, 马胜涛, 杨欣玲, 张子颖, 张世英, 贾世伟, 陈洋, 刘惠民. 基于因子分析和聚类分析的烤烟游离氨基酸含量区域特征研究[J]. 作物杂志, 2022, (5): 208–214
[7] 张特, 李广维, 李可心, 李欣欣, 赵强. 滴施缩节胺对棉花生长发育及产量的影响[J]. 作物杂志, 2022, (4): 124–131
[8] 王智华, 张凌云, 魏立兴. 不同小黑麦品种在冬闲盐碱耕地的比较试验[J]. 作物杂志, 2021, (4): 191–195
[9] 刘学彤, 郑春莲, 曹薇, 党红凯, 曹彩云, 李晓爽, 李科江, 马俊永. 长期定位施肥对土壤有机质、不同形态氮含量及作物产量的影响[J]. 作物杂志, 2021, (4): 130–135
[10] 张文, 刘铨义, 曾庆涛, 蔡晓莉, 冯杨, 逯涛. 不同株行距配置对机采棉成铃特性及纤维品质的影响[J]. 作物杂志, 2021, (2): 147–152
[11] 孙正冉, 吴昊, 张翠萍, 张晋丽, 贺道华. 棉花化学打顶剂的配制与筛选[J]. 作物杂志, 2021, (1): 112–117
[12] 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175–181
[13] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[14] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[15] 袁长凯, 罗海华, 陈功, 高欣, 彭金剑, 向春玲, 殷梦瑶, 王培培, 徐兰兰, 汤飞宇. 不同棉花基因型种子萌发响应铜胁迫的差异[J]. 作物杂志, 2020, (3): 53–59
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!