作物杂志,2024, 第6期: 917 doi: 10.16035/j.issn.1001-7283.2024.06.002
蒋凤林(), 雷雄彪(), 赵嘉暄, 黄敏, 李曼菲(), 杜何为()
Jiang Fenglin(), Lei Xiongbiao(), Zhao Jiaxuan, Huang Min, Li Manfei(), Du Hewei()
摘要:
根毛的生长发育有助于植物获取土壤水分和矿质营养元素。对根毛的深入研究不仅对了解植物根系的适应性、吸收能力和生长调控机制具有理论和实践意义,而且为细胞分化决定、发育和程序化死亡机制探索提供了理论基础。本文围绕小G蛋白Rop参与的根毛起始和尖端生长,转录因子参与的根毛细胞命运决定、根毛起始和根毛发育,Ca2+参与的根毛尖端生长,磷酸盐参与的根毛尖端生长及生长素参与的根毛生长等方面,归纳综述了包括根毛细胞命运决定、根毛起始及根毛尖端生长在内的根毛生长发育过程及分子调控机制,并简单总结出调控根毛生长发育基因的分子调控网络。对植物根毛对养分的吸收、获取及利用、影响植物根毛生长发育的分子调控机制进行阐述,为根毛生长发育的分子调控机制研究提供理论参考。
[1] | 张德健, 夏仁学, 曹秀. 根毛的生长发育及其遗传基础. 植物生理学报, 2015, 51(1):9-20. |
[2] | Dolan L, Duckett C M, Grierson C S, et al. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development, 1994, 120(9):2465-2474. |
[3] | Bloch D, Monshausen G, Gilroy S, et al. Co-regulation of root hair tip growth by ROP GTPases and nitrogen source modulated pH fluctuations. Plant Signaling and Behavior, 2011, 6(3):426-429. |
[4] |
Miyawaki K N, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Frontiers in Plant Science, 2014, 5:449.
doi: 10.3389/fpls.2014.00449 pmid: 25295042 |
[5] | Gendre D, Baral A, Dang X, et al. Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function. Development, 2019, 146(5):168559. |
[6] | Jones M A, Shen J J, Fu Y, et al. The Arabidopsis Rop 2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell, 2002, 14(4):763-776. |
[7] | Jin Z C, Li T, Zhou Y L, et al. Small molecule RHP 1 promotes root hair tip growth by acting upstream of the RHD6-RSL4- dependent transcriptional pathway and ROP signaling in plants. The Plant Journal, 2022, 110(6):1636-1650. |
[8] |
Danxia K, Xiang Y L, Ya P H, et al. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiology and Biochemistry, 2016, 108:488-498.
doi: S0981-9428(16)30340-0 pmid: 27592173 |
[9] | Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436 (7054):1176-1180. |
[10] | Gu Y, Li S D, Lord E M, et al. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control rho GTPase-dependent polar growth. The Plant Cell, 2006, 18(2):366-381. |
[11] |
Denninger P, Reichelt A, Schmidt V A F, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Current Biology, 2019, 29(11):1854-1865.
doi: S0960-9822(19)30488-9 pmid: 31104938 |
[12] | Kim E J, Hong W J, Tun W, et al. Interaction of OsRopGEF 3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Frontiers in Plant Science, 2021, 12:661352. |
[13] | Huang G, Li E, Ge F R, et al. Arabidopsis RopGEF4 and RopGEF 10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytologist, 2013, 200(4):1089-1101. |
[14] |
Takeda S, Gapper C, Kaya H, et al. Local positive feedback regulation determines cell shape in root hair cells. Science, 2008, 319(5867):1241-1244.
doi: 10.1126/science.1152505 pmid: 18309082 |
[15] |
Li E, Zhang Y L, Shi X L, et al. A positive feedback circuit for ROP-mediated polar growth. Molecular Plant, 2021, 14(3):395- 410.
doi: 10.1016/j.molp.2020.11.017 pmid: 33271334 |
[16] |
Li E, Cui Y, Ge F R, et al. AGC1.5 kinase phosphorylates RopGEFs to control pollen tube growth. Molecular Plant, 2018, 11(9):1198-1209.
doi: S1674-2052(18)30222-3 pmid: 30055264 |
[17] | Heim M A, Jakoby M, Werber M, et al. The basic helix-loop- helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003, 20(5):735-747. |
[18] |
Benoît M, Keke Y, Stefan J, et al. An ancient mechanism controls the development of cells with a rooting function in land plants. Science, 2007, 316(5830):1477-1480.
doi: 10.1126/science.1142618 pmid: 17556585 |
[19] | Angela B, Raghunandan M K, Yana W, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genetics, 2012, 8(1):e1002446. |
[20] |
Yi K, Menand B, Bell E, et al. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 2010, 42(3):264-267.
doi: 10.1038/ng.529 pmid: 20139979 |
[21] | Pires N D, Yi K, Breuninger H, et al. Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23):9571-9576. |
[22] | Kim C M, Han C D, Dolan L. RSL class I genes positively regulate root hair development in Oryza sativa. New Phytologist, 2017, 213(1):314-323. |
[23] | Shibata M, Breuer C, Kawamura A, et al. GTL1 and DF 1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development, 2018, 145(3):159707. |
[24] | Datta S, Prescott H, Dolan L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size. Nature Plants, 2015, 1(10):15138. |
[25] | Hwang Y, Choi H S, Cho H M, et al. Tracheophytes contain conserved orthologs of a basic helix-loop-helix transcription factor that modulate ROOT HAIR SPECIFIC genes. The Plant Cell, 2017, 29 (1):39-53. |
[26] | Zhang X X, Bian A, Li T, et al. ROS and calcium oscillations are required for polarized root hair growth. Plant Signaling and Behavior, 2022, 17(1):2106410. |
[27] | Shibata M, Favero D S, Takebayashi R, et al. Trihelix transcription factors GTL1 and DF 1 prevent aberrant root hair formation in an excess nutrient condition. New Phytologist, 2022, 235(4):1426-1441. |
[28] | Volz R, Kim S K, Mi J, et al. The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism,and regulates bacterial-triggered immunity. PLoS Genetics, 2018, 14 (10):e1007708. |
[29] |
Ding W, Yu Z, Tong Y, et al. A transcription factor with a bHLH domain regulates root hair development in rice. Cell Research, 2009, 19(11):1309-1311.
doi: 10.1038/cr.2009.109 pmid: 19752888 |
[30] | Wang C X, Qi C Y, Luo J H, et al. Characterization of LRL5 as a key regulator of root hair growth in maize. The Plant Journal, 2019, 98(1):71-82. |
[31] | Qiu Y P, Tao R, Feng Y, et al. EIN3 and RSL4 interfere with an MYB-bHLH-WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2021, 118(51):e2110004118. |
[32] |
Cai Y, Bartholomew E S, Dong M, et al. The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. Journal of Experimental Botany, 2020, 71(18):5425-5437.
doi: 10.1093/jxb/eraa251 pmid: 32490515 |
[33] |
Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 2005, 10(2):63-70.
doi: 10.1016/j.tplants.2004.12.011 pmid: 15708343 |
[34] |
Borassi C, Gloazzo D J, Ricardi M M, et al. A cell surface arabinogalactan-peptide influences root hair cell fate. New Phytologist, 2020, 227(3):732-743.
doi: 10.1111/nph.16487 pmid: 32064614 |
[35] |
侍双月, 陈子玉, 安丽君. 植物表皮毛发育控制基因GL2遗传互作因子的筛选和鉴定. 生物技术通报, 2016, 32(11):162-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.019 |
[36] | Han G L, Wei X C, Dong X X, et al. Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL 2 to repress root hair initiation and elongation by directly suppressing bHLH genes. The Plant Cell, 2020, 32(1):206-225. |
[37] | Bernhardt C, Lee M M, Gonzalez A, et al. The bHLH genes GLABRA 3 (GL3) and enhancer of GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development, 2003, 130(26):6431-6439. |
[38] | Hung F Y, Chen J H, Feng Y R, et al. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3. The Plant Journal, 2020, 103(5):1735-1743. |
[39] |
Tian W, Wang C, Gao Q F, et al. Calcium spikes,waves and oscillations in plant development and biotic interactions. Nature Plants, 2020, 6(7):750-759.
doi: 10.1038/s41477-020-0667-6 pmid: 32601423 |
[40] |
Bibikova T N, Zhigilei A, Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta, 1997, 203(4):495-505.
doi: 10.1007/s004250050219 pmid: 9421933 |
[41] | Tan Y Q, Yang Y, Zhang A, et al. Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Communications, 2020, 1(1):100001. |
[42] |
Kai R K, Michael M W, José A F. Calcium regulation of tip growth: new genes for old mechanisms. Current Opinion in Plant Biology, 2011, 14(6):721-730.
doi: 10.1016/j.pbi.2011.09.005 pmid: 22000040 |
[43] | Ma W, Ali R, Berkowitz G A. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiology and Biochemistry, 2006, 44(7):494-505. |
[44] |
Brost C, Studtrucker T, Reimann R, et al. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. The Plant Journal, 2019, 99(5):910- 923.
doi: 10.1111/tpj.14371 pmid: 31033043 |
[45] |
Zhang S S, Pan Y J, Tian W, et al. Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Molecular Plant, 2017, 10(7):1004-1006.
doi: S1674-2052(17)30067-9 pmid: 28286297 |
[46] | Zeb Q, Wang X, Hou C, et al. The interaction of CaM7 and CNGC 14 regulates root hair growth in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(7):887-896. |
[47] | Bai L, Ma X N, Zhang G Z, et al. A receptor-like kinase mediates ammonium homeostasis and is important for the polar growth of root hairs in Arabidopsis. The Plant Cell, 2014, 26(4):1497-1511. |
[48] | You Q Y, Dong N N, Yang H, et al. The Arabidopsis receptor-like kinase CAP 1 promotes shoot growth under ammonium stress. Biology, 2022, 11(10):1452. |
[49] | Huang C Z, Jiao X M, Ling Y, et al. ROP-GEF signal transduction is involved in AtCAP1-regulated root hair growth. Plant Growth Regulation, 2019, 87(1):1-8. |
[50] | Song W, Choi K, Alexis D A, et al. Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49):19808-19813. |
[51] | Yuan P G, Luo F X, Gleason C, et al. Calcium/calmodulin- mediated microbial symbiotic interactions in plants. Frontiers in Plant Science, 2022, 13:984909. |
[52] | Kanaoka M M, Torii K U. FERONIA as an upstream receptor kinase for polar cell growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41):17461-17462. |
[53] | Ying S, Scheible W R. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. Plant Cell and Environment, 2022, 45(6):1796- 1812. |
[54] | Xiao F, Zhang Y Y, Zhao S S, et al. MYB30 and ETHYLENE INSENEITIVE 3 antagonistically regulate root hair growth and phosphorus uptake under phosphate deficiency in Arabidopsis. Plant Signaling and Behavior, 2021, 16(7):1913310. |
[55] | Lei M G, Zhu C M, Liu Y D, et al. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytologist, 2011, 189(4):1084-1095. |
[56] | Damar L L, Marco A L, Sandra I G, et al. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65(1):95-123. |
[57] | Song L, Yu H P, Dong J S, et al. The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation. PLoS Genetics, 2016, 12(7):e1006194. |
[58] | Stetter M G, Schmid K, Ludewig U. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana. PLoS ONE, 2015, 10(3):e120604. |
[59] | 冯凡, 孙虎威, 赵全志. 缺磷调控水稻根毛生长发育的机制. 河南农业大学学报, 2018, 52(4):519-525. |
[60] | Péret B, Clément M, Nussaume L, et al. Root developmental adaptation to phosphate starvation:better safe than sorry. Trends in Plant Science, 2011, 16(8):442-450. |
[61] | Jia Z, Giehl R, von Wiren N. Nutrient-hormone relations: Driving root plasticity in plants. Molecular Plant, 2022, 15(1):86-103. |
[62] |
Bhosale R, Giri J, Pandey B K, et al. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 2018, 9(1):1409.
doi: 10.1038/s41467-018-03851-3 pmid: 29651114 |
[63] | Mangano S, Denita-Juarez S P, Marzol E, et al. High auxin and high phosphate impact on RSL 2 expression and ROS- homeostasis linked to root hair growth in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9:1164. |
[64] | Ying S, Blancaflor E B, Liao F, et al. A phosphorus-limitation induced,functionally conserved DUF 506 protein is a repressor of root hair elongation in plants. New Phytologist, 2022, 233(3):1153-1171. |
[65] | Kato M, Aoyama T, Maeshima M. The Ca2+-binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer. The Plant Journal, 2013, 74(4):690-700. |
[66] |
Kato M, Tsuge T, Maeshima M, et al. Arabidopsis PCaP2 modulates the phosphatidylinositol 4,5-bisphosphate signal on the plasma membrane and attenuates root hair elongation. The Plant Journal, 2019, 99(4):610-625.
doi: 10.1111/tpj.14226 pmid: 30604455 |
[67] | Lee R D, Cho H T. Auxin, the organizer of the hormonal/ environmental signals for root hair growth. Frontiers in Plant Science, 2013, 4:448. |
[68] | Mangano S, Denita-Juarez S P, Choi H, et al. Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(20):5289-5294. |
[69] |
Masucci J D, Schiefelbein J W. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene- associated process. Plant Physiology, 1994, 106(4):1335-1346.
doi: 10.1104/pp.106.4.1335 pmid: 12232412 |
[70] |
Masucci J D, Schiefelbein J W. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell, 1996, 8(9):1505-1517.
doi: 10.1105/tpc.8.9.1505 pmid: 8837505 |
[71] |
Swarup R, Bhosale R. Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science, 2019, 10:1306.
doi: 10.3389/fpls.2019.01306 pmid: 31719828 |
[72] |
Swarup R, Peret B. AUX/LAX family of auxin influx carriers-an overview. Frontiers in Plant Science, 2012, 3:225.
doi: 10.3389/fpls.2012.00225 pmid: 23087694 |
[73] |
Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 2016, 67:539-574.
doi: 10.1146/annurev-arplant-043015-112122 pmid: 26905654 |
[74] | Dindas J, Scherzer S, Roelfsema M R G, et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications, 2018, 9(1):1-10. |
[75] | Marchant A, Kargul J, May S T, et al. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO Journal, 1999, 18(8):2066-2073. |
[76] |
Yang Y D, Ulrich Z H, Christopher G T, et al. High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology, 2006, 16(11):1123-1127.
doi: 10.1016/j.cub.2006.04.029 pmid: 16677815 |
[77] | Jose M A, Takashi H, Gregg R, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284(5423):2148-2152. |
[78] |
Thomas S, Niko G, Markus G, et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 1999, 286(5438):316-318.
pmid: 10514379 |
[79] |
Urs F, Yoshihisa I, Karin L, et al. Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Current Biology, 2006, 16(21):2143- 2149.
pmid: 17084699 |
[80] |
Giri J, Bhosale R, Huang G, et al. Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 2018, 9(1):1408.
doi: 10.1038/s41467-018-03850-4 pmid: 29650967 |
[81] | Wang M, Qiao J Y, Yu C L, et al. The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant Cell and Environment, 2019, 42(4):1125-1138. |
[82] | Zhang Y, Nasser V, Pisanty O, et al. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB 20 in auxin transport. Nature Communications, 2018, 9(1):4204. |
[83] | Cho M, Lee S H, Cho H T. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. The Plant Cell, 2007, 19(12):3930-3943. |
[84] |
Kleine-Vehn J, Langowski L, Wisniewska J, et al. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Molecular Plant, 2008, 1(6):1056-1066.
doi: 10.1093/mp/ssn062 pmid: 19825603 |
[85] | Chen P R, Ge Y H, Chen L Y, et al. SAV4 is required for ethylene-induced root hair growth through stabilizing PIN2 auxin transporter in Arabidopsis. New Phytologist, 2022, 234(5):1735- 1752. |
[86] |
Ganguly A, Lee S H, Cho M, et al. Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. Plant Physiology, 2010, 153(3):1046-1061.
doi: 10.1104/pp.110.156505 pmid: 20439545 |
[87] | Dal Bosco C, Dovzhenko A, Palme K. Intracellular auxin transport in pollen: PIN8, PIN5 and PILS5. Plant Signaling and Behavior, 2012, 7(11):1504-1505. |
[88] | Cazzonelli C I, Vanstraelen M, Simon S, et al. Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS ONE, 2013, 8(7):e70069. |
[89] | Koster P, DeFalco T A, Zipfel C. Ca2+ signals in plant immunity. The EMBO Journal, 2022, 41(12):e110741. |
[90] |
Wan L, He Z. NADase and now Ca2+ channel, what else to learn about plant NLRs?. Stress Biology, 2021, 1(1):7.
doi: 10.1007/s44154-021-00007-0 pmid: 37676511 |
[91] | Zhang Y T, Wang Z Q, Liu Y S, et al. Plasma membrane- associated calcium signaling modulates cadmium transport. New Phytologist, 2023, 238(1):313-331. |
[92] |
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. Frontiers in Plant Science, 2015, 6:796.
doi: 10.3389/fpls.2015.00796 pmid: 26483813 |
[93] |
Krupinski P, Bozorg B, Larsson A, et al. A model analysis of mechanisms for radial microtubular patterns at root hair initiation sites. Frontiers in Plant Science, 2016, 7:1560.
pmid: 27840629 |
[94] |
Nakamura M, Claes A R, Grebe T, et al. Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells. Plant Physiology, 2018, 176(1):378-391.
doi: 10.1104/pp.17.00713 pmid: 29084900 |
[95] | Qin H, Huang R. Auxin controlled by ethylene steers root development. International Journal of Molecular Sciences, 2018, 19(11):3656. |
[1] | 李斐, 边少锋, 徐晨, 赵洪祥, 宋杭霖, 王芙臣, 庄妍. 坡耕地垄侧栽培对玉米生理特性及生长发育的影响[J]. 作物杂志, 2024, (6): 120125 |
[2] | 李晓婷, 张婷婷, 张艳丽, 李志伟, 韩丽, 赵鑫瑶, 张永平, 李立军. 燕麦地上部可培养内生真菌多样性分析及其功能研究[J]. 作物杂志, 2024, (6): 194204 |
[3] | 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218225 |
[4] | 姚琦, 王皓, 徐翎清, 兴旺, 刘大丽, 鲁振强. 甜菜C2H2型锌指蛋白转录因子家族全基因组鉴定及镉胁迫下的表达分析[J]. 作物杂志, 2024, (4): 3342 |
[5] | 吴永兵, 袁华恩, 张瑛, 陈泳纬, 阳苇丽, 何正川, 赵铭钦. 不同垄高下雪茄烟根组织结构及根系与地上部生长动态变化[J]. 作物杂志, 2024, (3): 148155 |
[6] | 刘亚军, 逯昀, 王文静, 胡启国, 储凤丽, 李志杰. 有机肥与土壤调理剂对连作甘薯生长发育及土壤肥力的影响[J]. 作物杂志, 2024, (3): 168174 |
[7] | 解梦凡, 贾海江, 曲远凯, 农世英, 李俊霖, 王杰, 刘力玮, 闫慧峰. 种植密度和氮肥用量对百色烟区烤烟叶片发育及烟叶产量的影响[J]. 作物杂志, 2024, (2): 189197 |
[8] | 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 6572 |
[9] | 刘晨, 杨明峰, 杨龙, 张楠, 于涛. 双行凹垄模式下宽窄行配置对烤烟上部叶生长发育及质量的影响[J]. 作物杂志, 2023, (5): 151156 |
[10] | 刘晓敏, 徐锐, 孙敬国, 赵凡冲, 司振兴, 梁郅哲, 许自成, 韩丹. 井窖深度与覆盖方式对窖内气热环境及烤烟生长和产量的影响[J]. 作物杂志, 2023, (5): 157163 |
[11] | 杨密, 王美娟, 许海涛. 不同生态区玉米自交系苞叶动态发育差异性研究[J]. 作物杂志, 2023, (5): 8190 |
[12] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 马铃薯生长及生理特性对水分胁迫的响应研究综述[J]. 作物杂志, 2023, (4): 1621 |
[13] | 韩玉环, 刘晨, 杨龙, 于涛. 打顶时期和留叶数对山东烤烟上部叶生长发育的影响[J]. 作物杂志, 2023, (2): 157162 |
[14] | 李迪秦, 姚少云, 王青, 易克, 刘伊芸, 汤晓明, 彭媛媛, 符昌武. 烟苗生长发育对不同氮源形态的响应[J]. 作物杂志, 2023, (1): 201206 |
[15] | 周浩, 邱先进, 徐建龙. 磁化水灌溉对农作物生长发育影响的研究进展[J]. 作物杂志, 2022, (6): 16 |
|