作物杂志,2025, 第4期: 164–172 doi: 10.16035/j.issn.1001-7283.2025.04.021

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

施氮量与种植密度对海岛棉铃叶系统抗氧化特性的影响

张承洁(), 王丽, 胡浩然, 宁丽云, 吴一帆, 张巨松()   

  1. 新疆农业大学农学院/教育部棉花工程研究中心,830052,新疆乌鲁木齐
  • 收稿日期:2024-04-25 修回日期:2024-07-24 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 张巨松,研究方向为棉花高产栽培与生理生态,E-mail:xjndzjs@163.com
  • 作者简介:张承洁,主要从事棉花高产栽培生理研究,E-mail:985487211@qq.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项—棉花优质高产高效标准化生产技术集成示范(2020A01002-4)

Effects of Nitrogen Application Rate and Planting Density on Antioxidant Properties of Boll-Leaf System in Gossypium barbadense L.

Zhang Chengjie(), Wang Li, Hu Haoran, Ning Liyun, Wu Yifan, Zhang Jusong()   

  1. College of Agronomy, Xinjiang Agricultural University / Cotton Engineering Research Center of the Ministry of Education, Urumqi 830052, Xinjiang, China
  • Received:2024-04-25 Revised:2024-07-24 Online:2025-08-15 Published:2025-08-12

摘要: 在南疆自然生态条件下,以‘新78’为材料,采用双因素裂区试验设计,主区设置3种种植密度,分别为2.0×105(M20)、2.4×105(M24)、2.8×105株/hm2(M28),裂区共设4个施氮水平,分别为0(N0)、160(N1)、320(N2)、480 kg/hm2(N3),旨在利用海岛棉源库协调性阐明利于海岛棉的种植密度和施氮量最优组合,为建立新疆海岛棉高产优质栽培技术提供科学依据。结果表明,施氮能提高对位叶的相对叶绿素含量(SPAD值),并显著增强棉铃与其对位叶超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,降低丙二醛(MDA)含量,但N2与N3处理之间差异不大;在花后第50天,与N0相比,施氮处理棉铃与其对位叶SOD活性增幅分别为2.5%~7.5%与3.9%~7.8%,POD活性增幅分别为8.3%~22.0%与2.4%~16.1%。增密处理降低棉铃与其对位叶中SOD、POD活性并增加MDA含量,但对SPAD值影响不大;在花后第50天,M20的棉铃与其对位叶SOD活性较M24分别增加了3.1%与0.6%,较M28分别增加了5.2%与3.5%,POD活性较M28分别增加了3.5%与1.4%。M20N2与M24N2处理组合表现出较强的抗氧化能力,M24N2组合皮棉产量与籽棉产量最高,较其他处理组合的增幅分别为1.5%~43.7%与3.1%~45.6%。综上,M24N2组合海岛棉源库协同抗氧化能力强,籽棉与皮棉的产量均达到了峰值,因此施氮量320 kg/hm2且密度2.4×105株/hm2更适宜南疆地区海岛棉的种植。

关键词: 海岛棉, 种植密度, 施氮量, 铃叶系统, 抗氧化特性

Abstract:

Under the natural ecological conditions of southern Xinjiang, with ’Xin 78’ as the material, a two-factor split-plot experiment was adopted, with three planting densities in the main plot (M20: 20×104 plants/ha, M24: 24×104 plants/ha, M28: 28×104 plants/ha) and four nitrogen application levels in the sub-plot (N0: 0 kg/ha, N1: 160 kg/ha, N2: 320 kg/ha, N3: 480 kg/ha), aiming to clarify the optimal combination of planting density and nitrogen application rate of Gossypium barbadense L. by using the coordination of sea island cotton source and reservoir, and to provide a scientific basis for the construction of high-yield and high-quality cultivation technology of Xinjiang sea island cotton. The results showed that nitrogen application could increase the SPAD value of subtending leaves, significantly enhance the activities of SOD and POD of cotton boll and subtending leaves, and reduce the content of MDA, but there was no significant difference between N2 and N3 treatments. On the 50th day after anthesis, compared with N0, the SOD activities of cotton boll and subtending leaf increased by 2.5%-7.5% and 3.9%-7.8%, respectively, and the POD increased by 8.3%-22.0% and 2.4%-16.1%, respectively. On the 50th day after anthesis, the SOD activities of cotton bolls and subtending leaves of M20 increased by 3.1% and 0.6% than that of M24, and increased by 5.2% and 3.5% than that of M28, respectively, and the POD activities increased by 3.5% and 1.4% than that of M28, respectively. The combined treatment of M20N2 and M24N2 showed strong antioxidant capacity, and the lint yield and seed cotton yield of M24N2 combination were the highest, with an increase of 1.5%-43.7% and 3.1%-45.6%, respectively, compared with other combined treatments. In summary, the synergistic antioxidant capacity of the sea island cotton source and reservoir were strong, and the yield of seed cotton and lint cotton reached the peak under the M24N2 combination treatment, so the nitrogen application rate of 320 kg/ha and the density of 2.4×105 plants/ha were more suitable for the planting of sea island cotton in southern Xinjiang.

Key words: Gossypium barbadense L., Planting density, Nitrogen application rate, Bell-leaf system, Antioxidant properties

表1

土壤基础肥力

土壤深度
Soil depth
(cm)
有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Available nitrogen
(mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
pH
0~10 4.622 0.335 13.776 9.06 53.88 8.62
10~20 9.785 0.597 25.294 25.36 97.68 8.76
20~30 11.176 0.705 47.563 40.20 130.80 8.35
30~40 8.305 0.494 30.203 13.13 91.92 8.53
40~50 8.570 0.376 23.735 10.18 106.12 8.59
50~60 9.528 0.722 35.710 30.23 116.67 8.67
60~70 8.933 0.680 26.751 16.96 110.62 8.88
70~80 6.323 0.336 10.887 13.02 101.46 8.52

表2

不同处理的施肥策略

处理
Treatment
底肥
Base fertilizer
日期(月-日)Date (month-day) 总量
Total
06-19 06-27 07-04 07-11 07-19 07-27 08-05 08-14
N0 0 0 0 0 0 0 0 0 0 0
N1 0 0 8 16 32 48 32 16 8 160
N2 64 12.8 25.6 38.4 51.2 51.2 38.4 25.6 12.8 320
N3 96 38.4 38.4 57.6 57.6 57.6 57.6 38.4 38.4 480

图1

不同处理下海岛棉棉铃对位叶SPAD值

图2

不同处理下海岛棉棉铃对位叶SOD活性

图3

不同处理下海岛棉棉铃SOD活性

图4

不同处理下海岛棉棉铃对位叶POD活性

图5

不同处理下海岛棉棉铃POD活性

图6

不同处理下海岛棉棉铃对位叶MDA含量

图7

不同处理下海岛棉棉铃MDA含量

表3

不同处理下海岛棉的产量及其构成因素

种植密度
Planting
density
施氮量
Nitrogen
application rate
收获株数
Number of plants
harvested (/hm2)
单株结铃数
Boll number
per plant
单铃重
Single boll
weight (g)
衣分
Lint percentage
(%)
籽棉产量
Seed cotton yield
(kg/hm2)
皮棉产量
Lint yield
(kg/hm2)
M20 N0 178 137.65c 8.29cde 2.96a 33.94ab 4410.13d 1493.14cd
N1 180 836.71c 8.90abcd 3.17a 33.99a 5105.85bcd 1737.58bcd
N2 180 161.94c 10.27a 3.03a 33.07bc 5609.19abc 1857.32abcd
N3 179 487.18c 9.86ab 3.08a 33.35abc 5467.91abcd 1822.17abcd
M24 N0 223 346.83b 7.91cde 2.62bc 33.48abc 4617.89cd 1542.42cd
N1 224 696.36b 7.60de 3.08a 33.11abc 5239.37abcd 1735.25bcd
N2 222 672.06b 9.26abc 3.07a 33.89ab 6329.30a 2143.50a
N3 224 021.60b 8.35bcde 3.03a 33.25abc 5655.41abc 1881.20abc
M28 N0 249 662.62a 7.51de 2.46c 32.01bc 4598.71cd 1473.33d
N1 242 240.22a 7.32e 2.99a 31.70c 5278.54abcd 1672.56cd
N2 245 614.04a 8.52bcde 2.98a 33.23abc 6242.89ab 2074.55ab
N3 244 264.51a 8.46bcde 2.92bc 34.33a 6045.35ab 2080.52ab
施氮量Nitrogen application rate (N) ns ** ** ns ** **
种植密度Planting density (M) * ** * ns ns ns
施氮量×密度
Nitrogen application rate×Planting density (N×M)
ns
ns
ns
ns
ns
ns

表4

不同处理下海岛棉的纤维品质

种植密度
Planting
density
施氮量
Nitrogen
application rate
上半部平均长度
Average length of
upper half (mm)
整齐度
Uniformity
(%)
断裂比强度
Specific strengthat
break (cN/tex)
伸长率
Elongation
(%)
马克隆值
Micron
value
纺织参数
Textile
parameter
M20 N0 39.27ab 90.07ab 47.88a 7.93ab 4.03ab 238.00abc
N1 39.60ab 90.77ab 48.23a 8.33ab 4.30a 238.00abc
N2 39.80a 91.30ab 48.90a 8.37ab 4.07ab 238.67ab
N3 40.00a 90.17ab 47.84a 8.77a 4.10ab 251.00a
M24 N0 37.77bc 89.83ab 44.51ab 7.67b 4.17ab 220.33cd
N1 39.37ab 90.47ab 46.16ab 7.80b 3.80b 238.00abc
N2 39.47ab 91.33ab 46.81ab 8.43ab 4.13ab 234.67abc
N3 39.87a 90.80ab 44.95ab 8.43ab 4.20ab 229.33bc
M28 N0 37.37c 89.13b 42.67b 8.40ab 4.23a 210.67d
N1 38.83abc 90.90ab 45.17ab 8.47ab 4.30a 227.33bcd
N2 39.03abc 91.83a 46.63ab 8.37ab 4.03ab 249.33a
N3 38.93abc 91.60a 44.60ab 8.67a 4.27a 238.00abc
施氮量Nitrogen application rate (N) * ns ns ns ns **
种植密度Planting density (M) ns ns ** ns ns *
[1] 盛大海, 刘元英, 李广宇, 等. 水稻源库关系研究进展与应用. 东北农业大学学报, 2009, 40(5):117-122.
[2] 罗宏海, 李俊华, 张宏芝, 等. 源库调节对新疆高产棉花产量形成期光合产物生产与分配的影响. 棉花学报, 2009, 21(5):371-377.
doi: 10.11963/cs090507
[3] 孙红春, 冯丽肖, 谢志霞, 等. 不同氮素水平对棉花不同部位—铃叶系统生理特性及铃重空间分布的影响. 中国农业科学, 2007, 40(8):1638-1645.
[4] 刘光明, 赵灿, 蒋岩, 等. 施氮量对水稻源库协同衰老特征的影响. 植物生理学报, 2022, 58(1):173-185.
[5] 陈静. 氮素对转基因抗虫棉上部果枝“铃—叶系统”生长生理特性的影响. 保定: 河北农业大学, 2013.
[6] 李武波, 王依惠, 姜雯, 等. 不同氮磷增效肥对小麦旗叶衰老及产量的影响. 浙江农业科学, 2022, 63(7):1460-1464.
doi: 10.16178/j.issn.0528-9017.20213124
[7] 阎佩云, 姬苗苗, 顾田英, 等. 不同施氮水平对小麦幼苗抗氧化酶及叶绿素含量的影响. 陕西农业科学, 2020, 66(1):3-7.
[8] 张娜, 冯璐, 李玲, 等. 不同种植密度对南疆机采棉叶片生理特性及产量的影响. 中国农业大学学报, 2021, 26(5):22-29.
[9] 朱仕明, 肖玲玲, 张越, 等. 密度对樟树幼苗叶片生理特性的影响. 湖南林业科技, 2015, 42(3):28-31.
[10] 马卉, 牛玉萍, 夏军, 等. 滴灌模式和种植密度对棉花叶片衰老特性的影响. 新疆农业科学, 2017, 54(11):1972-1982.
doi: 10.6048/j.issn.1001-4330.2017.11.002
[11] 贾志锋, 马祥, 琚泽亮, 等. 氮肥和种植密度对燕麦叶片衰老特性及细胞结构的影响. 草地学报, 2021, 29(1):80-87.
doi: 10.11733/j.issn.1007-0435.2021.01.010
[12] 李金华. 不同密度栽培的绿衣枳实的生理特性研究. 福州: 福建农林大学, 2008.
[13] 谷晓博, 李援农, 杜娅丹, 等. 不同施氮水平对返青期水分胁迫下冬油菜补偿效应的影响. 中国生态农业学报, 2016, 24(5):572-581.
[14] 郭天财, 冯伟, 赵会杰, 等. 两种穗型冬小麦品种旗叶光合特性及氮素调控效应. 作物学报, 2004, 30(2):115-121.
[15] Li W, Cheng X, Xia P, et al. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China. Frontiers in Plant Science, 2018, 9:999.
[16] Men S N, Chen H L, Chen S H, et al. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Scientific Reports, 2020, 10(1):10201.
[17] 高秋美, 韩加坤, 任丽华, 等. 不同种植密度对济菊生理特性和光合特性的影响. 浙江农业科学, 2023, 64(12):2902-2905.
doi: 10.16178/j.issn.0528-9017.20230037
[18] Souza S A, Vieira J H, Farias D B D, et al. Impact of irrigation frequency and planting density on bean’s morpho-physiological and productive traits. Water, 2020, 12(9):2468.
[19] 张雪, 李强, 余宏军, 等. 氮胁迫对黄瓜幼苗抗氧化酶系统的影响. 农业工程学报, 2016, 32(增2):142-147.
[20] Chai Q, Gan Y T, Zhao C, et al. Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, 2016, 36(1):3.
[21] Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry, 2015, 112:22-32.
doi: 10.1016/j.phytochem.2014.09.016 pmid: 25446232
[22] 韩云飞. 水稻花后叶片衰老相关性状和基因表达对蘖穗氮肥响应研究. 哈尔滨: 东北农业大学, 2018.
[23] Qi D L, Wu Q. Physiological characteristics, lint yield, and nitrogen use efficiency of cotton under different nitrogen application rates and waterlogging durations. Journal of Soil Science and Plant Nutrition, 2023, 23(4):5594-5607.
[24] Amjad A, Li H B, Li R, et al. Physiological and biochemical analysis of AsA-GSH antioxidant system of sea-island cotton in response to Verticillium dahliae. The Journal of Microbiology and Molecular Genetics, 2022, 3(3):31-55.
[25] Ru C, Wang K F, Hu X T, et al. Nitrogen modulates the effects of heat, drought, and combined stresses on photosynthesis, antioxidant capacity, cell osmoregulation, and grain yield in winter wheat. Journal of Plant Growth Regulation, 2023, 42(3):1681-1703.
[26] Li W J, Wu B R, Hu B, et al. Effects of defoliation at different fertility stages on material accumulation, physiological indices and yield of cotton. Agriculture, 2024, 14(2):258.
[27] Chen J, Liu L T, Wang Z B, et al. Nitrogen fertilization effects on physiology of the cotton boll-leaf system. Agronomy, 2019, 9(6):271.
[28] 李侃, 谢章书, 何玉玺, 等. 播期和种植密度对不同熟性棉花生理特性及产量的影响. 湖南农业大学学报(自然科学版), 2023, 49(3):260-267..
[29] Zhou Q Y, He P Y, Tang J G, et al. Increasing planting density can improve the yield of Tartary buckwheat. Frontiers in Plant Science, 2023, 14:1313181.
[30] 侯振伟. 不同种植密度下补灌对小麦分蘖成穗和产量的调控及其生理基础. 泰安: 山东农业大学, 2022.
[31] 李金奥, 张思唯, 刘博远, 等. 种植密度对雪茄烟膜脂过氧化特性及烟叶质量的影响. 作物杂志, 2021(3):178-184.
[32] Li P C, Dong H L, Zheng C S, et al. Optimizing nitrogen application rate and plant density for improving cotton yield and nitrogen use efficiency in the North China Plain. PLoS ONE, 2017, 12(10):e0185550.
[33] Mei Y J, Guo W F, Fan S L, et al. Analysis of decision-making coefficients of the lint yield of upland cotton (Gossypium hirsutum L.). Euphytica, 2014, 196(1):95-104.
[34] 刘锦涛. 密度与行距配置对棉花生长发育及产量品质的影响. 阿拉尔: 塔里木大学, 2022.
[35] 段松江, 彭增莹, 申莹莹, 等. 不同海岛棉品种产量及纤维品质对氮肥的响应. 新疆农业科学, 2023, 60(7):1569-1579.
doi: 10.6048/j.issn.1001-4330.2023.07.002
[36] 陈伟, 刘欣悦, 桑晓慧, 等. 不同密度及施肥量对中棉所96014生长发育和产量的影响. 中国棉花, 2023, 50(10):20-23.
doi: 10.11963/cc20230090
[37] van der Sluijs Marinus H J. Effect of nitrogen application level on cotton fibre quality. Journal of Cotton Research, 2022, 5(1):9.
[1] 吴凤婕, 侯楠, 齐翔鲲, 杨克军, 付健, 王玉凤. 不同施氮量对半干旱区糯玉米主要营养品质及产量的影响[J]. 作物杂志, 2025, (4): 267–275
[2] 王志刚, 刘强, 王谨, 巩敬锦, 姚群英. 未来气象条件下旱地春小麦产量及生物量对施氮量和播期变化的响应模拟[J]. 作物杂志, 2025, (4): 276–282
[3] 王丽, 张承洁, 胡浩然, 宁丽云, 吴一帆, 郭仁松, 张巨松. 施氮量和种植密度对海岛棉冠层结构和光合特性的影响[J]. 作物杂志, 2025, (3): 116–124
[4] 杨天旭, 李谨成, 黄瑞寅, 邓文君, 王军, 王维, 蔡一霞. 施氮量与基追比对烤烟烟碱合成及关键酶活性的调控效应[J]. 作物杂志, 2025, (3): 156–164
[5] 李虎, 黄秋要, 吴子帅, 刘广林, 陈传华, 罗群昌, 朱其南. 种植密度和施氮量对优质常规稻桂育12产量和米质的影响[J]. 作物杂志, 2025, (3): 195–201
[6] 杨泽鹏, 万柯均, 郑盛华, 敖玉琴, 马明坤, 万学, 李珊珊, 宋昕, 王昌桃, 陈尚洪, 刘定辉, 陈红琳. 氮肥和播种量配置对无人机飞播油菜产量形成的影响[J]. 作物杂志, 2025, (3): 225–232
[7] 张圣昌, 魏玉明, 马丽娜, 杨钊, 刘文瑜, 黄杰, 刘欢, 杨发荣. 种植密度和施肥对饲用型藜麦生长特性的影响[J]. 作物杂志, 2025, (2): 128–134
[8] 米东明, 周佐艳, 张晓妍, 范振杰, 孙培杰, 黄潇, 任爱霞, 孙敏, 任永康. 施氮量对黑小麦物质运转与蛋白质含量的影响[J]. 作物杂志, 2025, (2): 155–161
[9] 朱子健, 陈娜娜, 吴月莹, 穰中文, 戴林建, 田明慧, 田峰, 易镇邪. 施氮量、种植密度和留叶数对湘西烟区湘烟7号产量和质量的影响[J]. 作物杂志, 2025, (1): 179–186
[10] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[11] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[12] 刘子琛, 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英. 增密减氮栽培对杂交籼稻稻米品质的影响[J]. 作物杂志, 2024, (5): 194–203
[13] 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241–246
[14] 何嘉辉, 李艳锋, 严天泽, 张选文, 秦鹏, 郭进有, 王凯, 刘雄伦, 杨远柱. 氮肥减施对超级稻玮两优8612产量及品质的影响[J]. 作物杂志, 2024, (5): 73–79
[15] 张薇, 王琦, 闫鹏, 许艳丽, 严洪冬, 李桂英, 陈迪苏, 焦晓燕, 卢霖, 董志强. 聚糠萘合剂对东北地区高粱不同密度群体叶片衰老及产量的影响[J]. 作物杂志, 2024, (5): 96–104
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!