作物杂志,2025, 第5期: 54–60 doi: 10.16035/j.issn.1001-7283.2025.05.008

• 专题:盐碱胁迫下作物抗逆响应与生态调控 • 上一篇    下一篇

盐碱胁迫下不同基因型绿豆对外源BR的响应

张金东(), 王成(), 卢环, 曾玲玲, 张巩亮, 孙浩月, 刘悦, 杨贺麟, 侯晓敏   

  1. 黑龙江省农业科学院齐齐哈尔分院, 161000, 黑龙江齐齐哈尔
  • 收稿日期:2024-08-21 修回日期:2024-11-05 出版日期:2025-10-15 发布日期:2025-10-21
  • 通讯作者: 王成,研究方向为杂粮育种,E-mail:zls1980oyyx@163.com
  • 作者简介:张金东,研究方向为食用豆育种与栽培,E-mail:921647183@qq.com
  • 基金资助:
    齐齐哈尔市科技计划联合引导项目(LNYGG-2024002);财政部和农业农村部:国家现代农业产业技术体系(CARS-08-Z09)

Response of Mung Bean Genotypes to Exogenous Brassinosteroids under Saline-Alkali Stress

Zhang Jindong(), Wang Cheng(), Lu Huan, Zeng Lingling, Zhang Gongliang, Sun Haoyue, Liu Yue, Yang Helin, Hou Xiaomin   

  1. Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, Heilongjiang, China
  • Received:2024-08-21 Revised:2024-11-05 Online:2025-10-15 Published:2025-10-21

摘要: 以绿丰2号、嫩绿4号和中绿27作为试验材料,探究了0.5、1.0、1.5和2.0 mg/L的油菜素内酯(brassinosteroids,BR)对盐碱胁迫下幼苗的调控效应。结果表明,盐碱环境下绿豆幼苗根部生长缓慢,土壤养分吸收能力下降,幼苗植株光合色素含量下降,光合速率降低,导致干物质积累量减少。喷施BR处理能够显著提高绿豆幼苗叶绿素相对含量,1.5 mg/L处理时地下部分根系总长和根表面积均显著增加;同时使得植株体内超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性提升,可溶性蛋白、脯氨酸和可溶性糖等渗透调节物质含量增加,显著降低了盐碱环境所带来的损伤。综上所述,盐碱胁迫下外源BR通过提高幼苗植株体内抗氧化酶活性及渗透调节物质含量,降低绿豆幼苗植株所受到的伤害。

关键词: 绿豆, 盐碱胁迫, 2,4-油菜素内酯, 幼苗生长, 叶绿素含量, 抗氧化酶活性

Abstract:

This study investigated the regulatory effects of exogenous brassinosteroids (BR) on mung bean seedlings under saline-alkali stress. Three genotypes (?Lüfeng 2?, ?Nenlü 4?, and ?Zhonglü 27?) were used, with BR applied at concentrations of 0.5, 1.0, 1.5, and 2.0 mg/L. The results showed that saline-alkali stress inhibited root growth, reduced nutrient uptake, decreased photosynthetic pigment content, and lowered photosynthetic capacity, leading to reduced dry matter accumulation. The content of photosynthetic pigments in seedlings stage decreased, and their photosynthetic capacity weakened, resulting in a reduction in dry matter accumulation. Spraying BR treatment could significantly increase the chlorophyll content of mung bean seedlings stage. Under the treatment of 1.5 m/L, the total root length and root surface area of the underground part significantly increased. Meanwhile, by regulating the enhancement of the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the plant body, and the increase in the contents of osmotic adjustment substances such as soluble protein, proline, and soluble sugar, the damage caused by the saline-alkali environment was significantly reduced. This treatment also enhanced the activity of antioxidant enzymes and increased the content of osmotic adjustment substances, thereby greatly reducing the damage caused by the saline-alkali environment.

Key words: Mung bean, Saline-alkali stress, Brassinosteroids, Seedling growth, Chlorophyll content, Antioxidant enzyme activity

表1

不同浓度BR对绿豆苗期盐碱胁迫下地上部分生长发育的影响

品种
Variety
处理
Treatment
株高
Plant height (cm)
干物质积累量
Dry matter accumulation (g)
绿丰2号
Lüfeng 2
CK 17.09±0.53a 0.30±0.01a
T1 9.46±0.30d 0.17±0.01e
T2 12.96±0.22c 0.19±0.01de
T3 12.76±0.26c 0.24±0.01b
T4 14.86±0.76b 0.21±0.01cd
T5 13.61±0.18bc 0.23±0.01bc
嫩绿4号
Nenlü 4
CK 17.79±0.61a 0.37±0.01a
T1 10.48±0.33d 0.19±0.01c
T2 13.00±0.17c 0.21±0.02bc
T3 13.77±0.44bc 0.23±0.01b
T4 15.11±0.40b 0.21±0.01bc
T5 12.53±0.49c 0.23±0.01b
中绿27
Zhonglü 27
CK 17.79±0.61a 0.49±0.01a
T1 18.17±0.46a 0.20±0.01d
T2 11.21±0.29d 0.21±0.01cd
T3 13.32±0.30c 0.29±0.01b
T4 13.80±0.39c 0.26±0.01b
T5 15.40±0.38b 0.25±0.02bc
F
F-value
品种 4.95* 93.78**
浓度 91.52** 264.00**
品种×浓度 2.25* 19.35**

表2

不同浓度BR对绿豆苗期盐碱胁迫下根部生长发育的影响

品种
Variety
处理
Treatment
根系总长
Total root length (mm)
根系干重
Root dry weight (g)
根体积
Root volume (cm3)
根表面积
Root surface area (cm2)
绿丰2号Lüfeng 2 CK 447.12±7.59a 0.06±0.01a 0.04±0.01a 39.14±2.58a
T1 93.63±3.35e 0.01±0.01c 0.01±0.01d 12.19±1.97d
T2 105.37±6.13de 0.02±0.01bc 0.02±0.01c 15.25±0.90cd
T3 133.36±6.40cd 0.02±0.01b 0.02±0.01b 16.32±1.65cd
T4 213.92±14.10b 0.02±0.01bc 0.02±0.01c 21.63±0.25b
T5 151.20±8.72c 0.02±0.01b 0.02±0.01b 18.55±0.56bc
嫩绿4号Nenlü 4 CK 112.75±16.58a 0.06±0.01a 0.04±0.01a 37.61±2.22a
T1 119.10±6.97d 0.02±0.01c 0.01±0.01c 15.10±1.65d
T2 143.17±7.56d 0.02±0.01c 0.02±0.01c 17.11±0.86cd
T3 147.76±4.39c 0.02±0.01c 0.02±0.01b 20.02±0.95bc
T4 201.82±7.62b 0.02±0.01c 0.02±0.01c 22.99±1.25b
T5 127.76±2.58cd 0.03±0.01b 0.02±0.01b 19.41±0.02bcd
中绿27 Zhonglü 27 CK 391.14±5.18a 0.10±0.01a 0.06±0.01a 59.62±7.14a
T1 104.75±1.68d 0.02±0.01c 0.02±0.01b 14.75±0.66c
T2 112.63±4.55d 0.04±0.01b 0.02±0.01b 19.89±0.77bc
T3 187.42±3.21b 0.04±0.01b 0.03±0.01b 21.97±0.67bc
T4 188.40±9.74b 0.03±0.01bc 0.02±0.01b 27.15±1.29b
T5 151.46±9.23c 0.03±0.01bc 0.04±0.02ab 21.68±0.16bc
FF-value 品种 8.85** 173.86** 8.68** 41.34***
浓度 1220.19** 392.65** 26.80** 195.11**
品种×浓度 14.30** 20.05** 1.26 9.86**

图1

不同浓度BR对绿豆苗期盐碱胁迫下叶绿素a含量的影响 不同字母表示同一品种不同处理差异显著(P < 0.05),下同。

图2

不同浓度BR对绿豆苗期盐碱胁迫下叶绿素b的影响

图3

不同浓度BR对绿豆苗期盐碱胁迫下叶绿素总量的影响

表3

不同浓度BR对绿豆苗期盐碱胁迫下渗透调节物质的影响

品种
Variety
处理
Treatment
可溶性糖
Soluble sugar
(mg/g)
可溶性蛋白
Soluble protein
(mg/g)
脯氨酸
Proline
(μg/g)
绿丰2号
Lüfeng 2
CK 3.62±0.08c 17.11±0.98ab 11.03±0.32d
T1 3.96±0.10bc 11.00±0.39d 11.28±0.24d
T2 4.66±0.26b 16.19±0.96ab 12.00±0.39cd
T3 4.27±0.38bc 14.62±0.10bc 17.19±0.43b
T4 6.10±0.48a 12.86±0.54cd 12.97±0.22c
T5 4.58±0.18bc 19.04±1.61a 18.91±0.48a
嫩绿4号
Nenlü 4
CK 4.12±0.14c 18.36±0.12a 11.95±0.07d
T1 4.36±0.15c 11.88±0.77c 11.92±0.14d
T2 5.18±0.11b 15.02±0.98b 13.45±0.23c
T3 5.13±0.14b 12.36±0.35c 16.44±0.13b
T4 5.91±0.24a 12.44±0.25c 12.61±0.09cd
T5 4.69±0.25bc 17.12±0.93ab 20.77±0.62a
中绿27
Zhonglü 27
CK 4.88±0.10c 16.36±1.02ab 10.84±0.19d
T1 5.05±0.05c 13.03±0.84bc 11.80±0.10d
T2 5.35±0.06b 15.74±1.23ab 15.03±0.35c
T3 5.45±0.10b 15.06±1.58ab 21.81±0.21a
T4 6.80±0.05a 11.51±0.20c 14.72±0.28c
T5 4.40±0.04d 16.87±0.82a 20.61±0.44b
F
F-value
品种 46.76** 1.61 112.08**
浓度 80.99** 51.54** 800.63**
品种×浓度 5.08** 3.32** 31.31**

图4

不同浓度BR对绿豆苗期盐碱胁迫下SOD活性的影响

图5

不同浓度BR对绿豆苗期盐碱胁迫下POD活性的影响

图6

不同浓度BR对绿豆苗期盐碱胁迫下CAT活性的影响

[1] 郝青婷, 高伟, 张泽燕, 等. 铁肥施用对绿豆产量和籽粒含铁量的影响. 作物杂志, 2024(5):105-109.
[2] 田静, 程须珍, 范保杰, 等. 我国绿豆品种现状及发展趋势. 作物杂志, 2021(6):15-21.
[3] 何录秋, 尹月皓, 张亚. 湖南绿豆生产存在问题与高产栽培措施. 耕作与栽培, 2012(4):53-54.
[4] 张志肖, 沈颖超, 范保杰, 等. 绿豆枯萎病抗性种质创制与新品种选育. 作物杂志, 2024(2):249-254.
[5] 余珠, 邹智, 陆光远, 等. 油莎豆响应非生物胁迫的生理与分子机制研究进展. 分子植物育种,(2023-12-11) [2025-08-20]. https://link.cnki.net/urlid/46.1068.S.20231209.1412.002.
[6] 杨艺, 常丹, 王艳, 等. 盐胁迫下茉莉酸(JA)及茉莉酸甲酯(MeJA)对棉花种子萌发及种苗生化特性的影响. 种子, 2015, 34(1):8-13,18.
[7] 沙汉景, 胡文成, 贾琰, 等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报, 2017, 43(11):1677-1688.
doi: 10.3724/SP.J.1006.2017.01677
[8] Symons G M, Davies C, Shavrukov Y, et al. Grapes on steroids. brassinosteroids are involved in grape berry ripening. Plant Physiology, 2006, 140(1):150-158.
[9] Zhou J, Wang J, Li X, et al. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65(15):4371-4383.
doi: 10.1093/jxb/eru217 pmid: 24899077
[10] Yamori W, Suzuki K, Noguchi K, et al. Effects of rubisco kinetics and rubiscoactivation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell & Environment, 2006, 29(8):1659-1670.
[11] Inger A, Anders B. Structure and function of rubisco. Plant Physiology and Biochemistry, 2008, 46(3):275-291.
[12] Whitney S M, Houtz R L, Alonso H. Advancing our understanding and capacity to engineer natureʼs CO2-sequestering enzyme, rubisco. Plant Physiology, 2011, 155(1):27-35.
[13] Wei Z Y, Li J. Brassinosteroids regulate root growth, development, and symbiosis. Molecular Plant, 2016, 9(1):86-100.
doi: S1674-2052(15)00456-6 pmid: 26700030
[14] Bao F, Shen J J, Brady S R, et al. Brassinosteroids interact with auxinto promote lateral root development in Arabidopsis. Plant physiology, 2004, 134(4):1624-1631.
[15] Gupta A, Singh M, Laxmi A. Interaction between glucose and brassinosteroid during theregulation of lateral root development in Arabidopsis. Plant physiology, 2015, 168(1):307-320.
[16] Blilou I, Xu J, Wildwater M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis root. Nature, 2005, 433(7021):39-44.
[17] Zheng C F, Ye Y, Liu W C, et al. Recovery of photosynthesis, sucrose metabolism, and proteolytic enzymes in Kandelia obovata from rare cold events in the northernmost mangrove, China. Ecological Processes, 2016, 5(9):3.
[18] Zheng X D, Tian Y K, et al. Exogenous brassinolide alleviates salt stress in Malus hupehensis rehd. by regulating the transcription of NHX-Type Na+(K+)/H+ antiporters. Frontiers in Plant Science, 2020, 11:38.
[19] Cui F, Liu L J, Zhao Q Z, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid- mediated salt stress tolerance. Plant Cell, 2012, 24(1):233-244.
[20] 叶子飘, 康华靖, 段世华, 等. 不同CO2浓度下大豆叶片的光合生理生态特性. 应用生态学报, 2018, 29(2):583-591.
doi: 10.13287/j.1001-9332.201802.025
[21] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000.
[22] 陈建勋, 王晓峰. 植物生理学模块实验指导. 广州: 华南理工大学出版社, 2002.
[23] 李玲. 植物生理学模块实验指导. 北京: 科学出版社, 2009.
[24] 孙鲁鹏, 杨洋, 王亚娟, 等. 有机液体肥对盐碱胁迫下油菜幼苗生理及光合特性的影响. 北方园艺, 2022(8):1-8.
[25] 吴杨, 高慧纯, 张必弦, 等. 2,4-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响. 中国农业科学, 2017, 50(5):811-821.
doi: 10.3864/j.issn.0578-1752.2017.05.004
[26] 张碧茹, 米俊珍, 赵宝平, 等. 外源γ-氨基丁酸缓解燕麦幼苗盐碱胁迫的生理效应. 麦类作物学报, 2024, 44(2):222-229.
[27] 杨思震, 周璐瑶, 陈春林, 等. 外源ALA对盐碱胁迫下辣椒幼苗生理生化特性的影响. 中国瓜菜, 2023, 36(5):51-58.
[28] Mori M, Nomura T, Ooka H, et al. Isolation and characte-rization of a rice dwarf mutant with a defect in brassinoster old biosynthesis. Plant Physlology, 2002, 130(3):1152-1161.
[29] Zheng L W, Zhang L Z, et al. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. Journal of Proteomics, 2018, 173(20):139-154.
[30] Rozhon W, Akter S, Fernandez A, et al. Inhibitors of brassinosteroid biosynthesis and sianal transduction. Molecules, 2019, 24(23):4372.
[31] 马媛媛, 王智, 曹金萍, 等. 2,4-表油菜素内酯对盐碱胁迫下芸豆幼苗生长及生理特性的影响. 西北植物学报, 2024, 44 (8):1181-1189.
[32] 唐鑫华, 孟欣, 石忆, 等. 表油菜素内酯对NaCl胁迫下马铃薯生长和块茎品质的影响. 中国农业大学学报, 2022, 27(12):127-137.
[33] 雷新慧, 万晨茜, 陶金才, 等. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应. 作物学报, 2022, 48(5):1210-1221.
doi: 10.3724/SP.J.1006.2022.11040
[34] 刘强, 王庆成, 王占武, 等. 外源油菜素内酯对苍耳盐碱胁迫的缓解效应. 东北林业大学学报, 2014, 42(10):34-37.
[35] 杨洋. 不同程度复合盐碱胁迫对油菜苗期生理生化特性的影响. 石河子:石河子大学, 2020.
[36] 合佳敏, 张永清, 张萌, 等. 烯效唑浸种对盐碱胁迫下藜麦农艺性状及生理特性的影响. 作物杂志, 2024(2):234-241.
[1] 徐明丽, 吴柏辰, 刘畅, 高鑫涵, 殷佳琪, 何雪, 刘莹, 尹泽群, 苗兴芬. 褪黑素浸种对盐碱胁迫下谷子萌发的影响[J]. 作物杂志, 2025, (5): 42–46
[2] 闫晶蓉, 庞春花, 张永清, 毋悦悦, 侯钰晨, 王嘉祺, 乔曼. 脱硫石膏与腐植酸配施对盐碱地土壤及藜麦生长的影响[J]. 作物杂志, 2025, (5): 47–53
[3] 陈萍, 罗园园, 王娟, 孙权, 马玲芳, 马文礼, 谢静波. 燕麦萌发期对混合盐碱胁迫的响应及耐受性评价[J]. 作物杂志, 2025, (5): 61–66
[4] 赵洲, 张丽, 高新磊, 邱鸿雨. 复合盐碱胁迫对燕麦生长及代谢的影响[J]. 作物杂志, 2025, (5): 74–85
[5] 邸娜, 郑喜清, 王靖, 韩海军, 李娜. 向日葵应对列当寄生的生理响应差异性研究[J]. 作物杂志, 2025, (2): 123–127
[6] 景茂雅, 张子玉, 张萌, 合佳敏, 严翻翻, 高艳梅, 张永清. 水杨酸浸种对盐胁迫藜麦种子萌发及幼苗生长的影响[J]. 作物杂志, 2025, (1): 194–201
[7] 时会影, 范保杰, 刘长友, 王彦, 王珅, 张志肖, 苏秋竹, 田静. 绿豆种质资源萌发期耐盐性鉴定与评价[J]. 作物杂志, 2025, (1): 66–75
[8] 鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤. 外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响[J]. 作物杂志, 2024, (6): 212–217
[9] 崔宏, 刘青, 赵秀珍, 宗浩, 李莹, 申莉莉, 焦裕冰, 王凤龙, 杨金广, 袁莲莲. 防御假单胞菌KBD-3在作物病害防治及富硒中的应用研究[J]. 作物杂志, 2024, (6): 237–241
[10] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[11] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[12] 李诗晴, 张鹏, 公丹, 王素华, 张耀文, 王丽侠. 绿豆新品种的芽期耐盐性评价[J]. 作物杂志, 2024, (4): 188–193
[13] 侯钰晨, 庞春花, 张永清, 康书瑜, 毋悦悦, 闫晶蓉, 王嘉祺. 施用生物炭与氮肥对盐碱胁迫下藜麦幼苗生理生长特性的影响[J]. 作物杂志, 2024, (4): 240–246
[14] 张子怡, 王学虎, 苑莹, 沈志峰. 腐植酸悬浮剂对NaCl胁迫下小麦种子萌发和幼苗生长的影响[J]. 作物杂志, 2024, (4): 263–268
[15] 李菡, 赵玉雪, 周小可, 李云, 郭振清, 王健, 韩玉翠, 林小虎. 模拟海水胁迫对小麦萌发的影响[J]. 作物杂志, 2024, (4): 96–102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!