作物杂志,2025, 第5期: 74–85 doi: 10.16035/j.issn.1001-7283.2025.05.011

• 专题:盐碱胁迫下作物抗逆响应与生态调控 • 上一篇    下一篇

复合盐碱胁迫对燕麦生长及代谢的影响

赵洲(), 张丽, 高新磊, 邱鸿雨   

  1. 赤峰学院农学院024000, 内蒙古赤峰
  • 收稿日期:2024-08-26 修回日期:2024-09-25 出版日期:2025-10-15 发布日期:2025-10-21
  • 作者简介:赵洲,研究方向为作物抗逆生理及遗传育种,E-mail:zhaozhou00@hotmail.com
  • 基金资助:
    国家自然科学基金(32360450);内蒙古自然科学基金(2021MS03026)

Effects of Compound Saline-Alkali Stress on Growth and Metabolism of Oat

Zhao Zhou(), Zhang Li, Gao Xinlei, Qiu Hongyu   

  1. College of Agriculture, Chifeng University, Chifeng 024000, Inner Mongolia, China
  • Received:2024-08-26 Revised:2024-09-25 Online:2025-10-15 Published:2025-10-21

摘要:

为解析燕麦响应复合盐碱胁迫的机制,选取抗盐碱燕麦品种Xin-17和盐碱敏感品种草莜1号为试验材料,通过复合盐碱处理,系统研究了燕麦出苗率、表型指标、生理指标、代谢组及相关基因表达情况。结果表明,Xin-17出苗率和苗期表型均明显优于草莜1号。复合盐碱胁迫下,Xin-17可维持较高的地上部含水量和光合色素含量。代谢组研究发现,6-羟基褪黑素在2个品种中均显著上调表达,且在草莜1号中的上调更加显著(25.6倍)。紫丁香苷和血根碱等次生代谢物在2个品种中具有相同的变化趋势,即无品种间差异,在受到胁迫后也未发生显著差异表达。少数代谢物则呈现出明显的品种特异性,如草莜1号中的千里光宁碱和芦丁显著上调表达,而Xin-17中的姜黄素和东莨菪碱表达量相对较高。Xin-17中吲哚-3-乙酸在复合盐碱胁迫下维持稳定水平,其生长素合成关键基因及上游代谢物吲哚-3-乙酰胺均上调表达,而草莜1号的吲哚-3-乙酸含量则显著下调。另外,复合盐碱胁迫下,Xin-17中叶绿素a的降解产物脱镁叶绿酸A含量显著增加,最大上调12.8倍。上述代谢物响应盐碱胁迫的普遍特性及不同品种多样化的代谢特性,对于理解燕麦耐盐碱机制以及耐盐碱品种的选育具有重要意义。

关键词: 燕麦, 幼苗, 复合盐碱胁迫, 代谢组, 生长

Abstract:

In order to analyze the mechanism of oat response to compound saline-alkali stress, the emergence rate, phenotypic index, physiological index and metabolome of oat seedling were systematically studied through compound saline-alkali treatment of Xin-17 (saline-alkali resistant variety) and Caoyou-1 (saline-alkali sensitive variety). The results showed that the emergence rate and seedling phenotype of Xin-17 were significantly better than Caoyou-1. Under compound saline-alkali stress, Xin-17 could maintain higher moisture content of shoot and photosynthetic pigment content. Metabolome studies showed that the expression of 6-hydroxymelatonin was significantly up-regulated in both varieties, particularly in the Caoyou-1 (25.6 times). The secondary metabolites such as syringin and sanguinarine showed similar trends in two varieties, and there were no differences between varieties, nor significant differences in expression after stress. A few metabolites showed obvious variety specificity, such as senecionine and rutin were significantly up-regulated in Caoyou-1, while curcumin and scopoletin in Xin-17 were relatively high. Indole-3-acetic acid in Xin-17 maintained a stable level under compound saline-alkali stress, and its key gene of auxin synthesis and the upstream metabolite indole-3- acetamide were upregulated, while the content of indole-3-acetic acid in Caoyou-1 was significantly down- regulated. In addition, the content of pheophorbide A, a degradation product of chlorophyll-a in Xin-17, increased significantly under compound saline-alkali stress, with a maximum increase of 12.8 times. The general characteristics of the above metabolites in response to saline-alkali stress and the diversified metabolic characteristics of different varieties are of great significance for understanding the mechanism of saline-alkali tolerance and breeding of saline-alkali tolerance varieties in oat.

Key words: Oat, Seedling, Compound saline-alkali stress, Metabolome, Growth

表1

qRT-PCR检测基因及对应引物

编号Code 基因ID Gene ID 基因功能注释Gene function annotation 引物序列(5′-3′)Primer sequence (5′-3′)
1 Cluster-38721.80008 YUCCA,吲哚-3-丙酮酸单加氧酶 GCTGCCTGCTGATGTCTTGGG
GTTCGGCGACAACGGGATGG
2 Cluster-38721.50882 苯丙氨酸解氨酶 TGAGGAGGAGCTTCGACAGACAC
GGTACAGAGGGTATGAACGGCAATC
3 Cluster-38721.77689 硝酸根高效转运蛋白2.2 CGACCCAGCCAGAAGCAGAATG
GACCTTGGTGCCCGCTACTTTG
4 Cluster-38721.84959 磷转运蛋白2 GCCCCTGCCCATATGCTAAA
TTATGGCCACGAGCATGACA
5 Cluster-38721.55805 淀粉合酶 CTTGGTCGTCCCGTGAAAGA
ATGCCTCAGTGGAGCAGAAC
6 Cluster-38721.47252 蔗糖合成酶 GCACCGTGAGTATCAGCGATGTAG
ACCTGTTTGGGCAGTTCCGTTG
7 β-肌动蛋白(内参基因) CCAGCGAGGTCAAGACGAA
CCCAAGGCTAACAGGGAGAA

图1

复合盐碱胁迫下燕麦的出苗率 不同小写字母表示P < 0.05水平差异显著,下同。

图2

复合盐碱胁迫下燕麦苗期的生长情况

图3

复合盐碱胁迫下第6、7、8和13天的燕麦苗期株高变化

图4

复合盐碱胁迫下燕麦苗期地上部干重及含水量的变化

图5

复合盐碱胁迫下燕麦苗期光合色素含量的变化

图6

复合盐碱胁迫下燕麦苗期CAT和SOD活性的变化

图7

复合盐碱胁迫下燕麦苗期PCA分析图 (a) 阳离子;(b) 阴离子。

图8

复合盐碱胁迫下燕麦苗期主要代谢通路的KEGG富集分析(Top20代谢途径)

图9

复合盐碱胁迫下Xin-17和草莜1号的色氨酸代谢通路(a)和次生代谢通路(b)

表2

复合盐碱胁迫下色氨酸代谢通路与次生代谢通路中的主要代谢物

代谢物ID
Metabolite ID
代谢物
Metabolite
X17CK vs C1CK C1T2 vs C1CK C1T5 vs C1CK X17T2 vs X17CK X17T5 vs X17CK
log2FC P log2FC P log2FC P log2FC P log2FC P
Com_18815_pos 6-羟基褪黑素 4.677 4.40E-06 2.710 0.017
Com_1368_pos 5-甲氧基吲哚乙酸 1.203 2E-04 1.869 2.1E-05
Com_264_pos 吲哚 1.777 0.022
Com_4506_pos 吲哚-3-乙酰胺 -1.068 0.025 1.155 0.029
Com_3334_neg 吲哚-3-乙酸 -3.148 3.43E-05 -2.216 3E-04
Com_5768_pos 千里光宁碱 -0.873 0.022 2.224 0.015
Com_16587_pos 芦丁 0.682 0.030 2.070 0.007
Com_6517_neg 短叶松素 1.494 2E-04
Com_2741_neg 芹菜素 1.192 0.002
Com_3581_pos 芽子碱甲酯 1.097 0.027
Com_4121_neg 柚皮素 1.036 0.006
Com_15315_pos 绿原酸 -1.039 0.007
Com_1276_pos 茉莉酸甲酯 0.582 0.014 -1.932 1E-04
Com_1009_neg 丙酮酸 -0.269 0.039 -0.846 0.001
Com_916_neg 延胡索酸 -0.673 0.043 -1.309 0.001
Com_3882_neg 松柏苷 1.579 0.006
Com_19926_pos 异甘草素 0.985 0.011
Com_8297_neg 胆红素 0.770 0.045 -1.446 0.026 -0.987 0.001
Com_1848_pos 东莨菪碱 2.510 3.0E-07 -1.482 2.2E-05 -1.597 0.001
Com_335_pos 胡椒酸 -1.979 6.5E-05 2.416 0.019
Com_3212_neg 左旋多巴 1.966 1.6E-06
Com_1857_neg 香草醛 -0.693 0.041 -1.144 4E-04 1.797 0.011
Com_5587_neg 姜黄素 1.865 0.001 -1.851 0.003 -2.213 0.001 -2.728 3E-05 -3.065 7E-06
Com_4159_pos 脱镁叶绿酸A 1.478 0.003 3.682 6E-07
Com_6775_pos L-高丝氨酸 3.784 2.3E-06 3.536 3.6E-09 2.697 1.1E-04 3.867 2.7E-06
Com_2002_pos 2-氨基乙基膦酸酯 1.411 0.009 1.048 0.037 2.115 1.0E-04 2.638 5.4E-05
Com_921_pos N-乙酰鸟氨酸脱酰基酶 -1.370 8.9E-05 1.528 1.0E-04 3.149 8.0E-04
Com_18818_pos 3-琥珀酰吡啶 1.191 5.0E-04 0.854 1.2E-04 1.484 1.0E-06
Com_1132_pos 4-胍基丁酸 3.180 0.009
Com_205_neg 棕榈酸 0.913 0.007
Com_15501_pos 延胡索碱 1.435 3.0E-04
Com_5038_neg 尿黑酸 1.175 0.001
Com_2413_neg D-葡萄糖二酸 -1.317 8.5E-05 1.350 9.6 E-05
Com_5408_pos 泛酰巯基乙胺 -0.849 0.018 -1.087 0.001 -1.491 1.2E-06
Com_4244_pos 紫草素 -1.144 4.0E-04
Com_7034_pos 白藜芦醇 -1.087 7.5E-05
Com_8890_pos 胆绿素 -1.041 0.011
Com_4560_neg 紫丁香苷
Com_12390_pos 牛磺胆酸
Com_4167_pos 血根碱
Com_3430_pos 依美汀

图10

复合盐碱胁迫下6个基因qRT-PCR检测结果

[1] Food and Agriculture Organization of the United Nations.The state of food and agriculture 2021. (2021-12-12)[2024-08-26].https://www.fao.org/3/cb4476en/cb4476en.pdf.
[2] Han M F, et al. Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 2014, 24(5):943-960.
[3] Chhabra R. Classification of salt-affected soils. Arid Land Research and Management, 2004, 19(1):61-79.
[4] Qadir M, Oster J D, Schubert S, et al. Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 2007, 96(7):197-247.
[5] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 2015, 115(3):419-431.
doi: 10.1093/aob/mcu217 pmid: 25466549
[6] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[7] Bui E N. Soil salinity: a neglected factor in plant ecology and biogeography. Journal of Arid Environments, 2013, 92:14-25.
[8] Bhattarai S, Biswas D, et al. Morphological, physiological, and genetic responses to salt stress in alfalfa: a review. Agronomy, 2020, 10(4):577.
[9] Julkowska M M, Testerink C. Tuning plant signaling and growth to survive salt. Trends in Plant Science, 2015, 20(9):586-594.
doi: 10.1016/j.tplants.2015.06.008 pmid: 26205171
[10] Sanchez D H, Siahpoosh M R, Roessner U, et al. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 2008, 132(2):209-219.
[11] Kim J K, Bamba T, Harada K, et al. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 2007, 58(3):415-424.
[12] Richter J A, Behr J H, Erban A, et al.Ion-dependent metabolic responses of Vicia faba L. to salt stress. Plant Cell and Environment, 2019, 42(1):295-309.
[13] Rengasamy P. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 2010, 37:613-620.
[14] Liu L, Wang B, Liu D, et al. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biology, 2020, 20(1):138.
doi: 10.1186/s12870-020-02349-9 pmid: 32245415
[15] Pang Q Y, Zhang A Q, Zang W, et al. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant and Soil, 2016, 402(1/2):379-394.
[16] De Oliveira D F, Lopes L S, Gomes-Filho E. Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta, 2020, 252(3):34.
doi: 10.1007/s00425-020-03437-8 pmid: 32761417
[17] Fang C Y, Luo J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant Journal, 2019, 97(1):91-100.
[18] Carrera F P, Noceda C, Maridueña-Zavala M G, et al. Metabolomics, a powerful tool for understanding plant abiotic stress. Agronomy, 2021, 11(5):824.
[19] Alawiye T T, Babalola O O. Metabolomics: current application and prospects in crop production. Biologia, 2020, 76(1):227-239.
[20] Guo R, Shi L X, Ding X M, et al. Effects of saline and alkaline stress on germination, seedling growth, and ion balance in wheat. Agronomy Journal, 2010, 102(4):1252-1260.
[21] Fercha A, Capriotti A L, Caruso G, et al. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics, 2016, 16(10):1537-1546.
doi: 10.1002/pmic.201500283 pmid: 26969838
[22] Yan G, Shi Y J, Chen F F, et al. Physiological and metabolic responses of Leymus chinensis seedlings to alkali stress. Plants, 2022, 11(11):1494.
[23] Strychar R, Webster F H, Wood P J.World Oat Production, Trade, and Usage. Minnesota:American Association of Cereal Chemists International, 2011.
[24] Chen O, Mah E, Dioum E, et al. The role of oat nutrients in the immune system: a narrative review. Nutrients, 2021, 13(4):1048.
[25] Han L P, Wang W H, Eneji A E, et al. Phytoremediating coastal saline soils with oats: accumulation and distribution of sodium, potassium, and chloride ions in plant organs. Journal of Cleaner Production, 2015, 90:73-81.
[26] Gerona M E B, Deocampo M P, Egdane J A, et al. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 2019, 26(4):207-219.
doi: 10.1016/j.rsci.2019.05.001
[27] Ribba T, Garrido-Vargas F, O'brien J A. Auxin-mediated responses under salt stress: from developmental regulation to biotechnological applications. Journal of Experimental Botany, 2020, 71(13):3843-3853.
doi: 10.1093/jxb/eraa241 pmid: 32433743
[28] Ryu H, Cho Y. Plant hormones in salt stress tolerance. Journal of Plant Biology, 2015, 58(3):147-155.
[29] Liu J, Zhu T T, et al. The role of melatonin in salt stress responses. International Journal of Molecular Sciences, 2019, 20 (7):1735.
[30] Zhan H S, Nie X J, Zhang T, et al. Melatonin: a small molecule but important for salt stress tolerance in plants. International Journal of Molecular Sciences, 2019, 20(3):709.
[31] Varghese N, Alyammahi O, Nasreddine S, et al. Melatonin positively influences the photosynthetic machinery and antioxidant system of Avena sativa during salinity stress. Plants, 2019, 8 (12):610.
[32] Mannino G, Pernici C, Serio G, et al. Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals - an overview. International Journal of Molecular Sciences, 2021, 22(18):9996.
[33] 翁文凤, 伍小方, 张凯旋, 等. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性. 作物杂志, 2021(4):1-9.
[34] 张旭丽, 王瑞军, 郗小倩, 等. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响. 作物杂志, 2024 (5):204-211.
[1] 李琳霖, 张震, 何钢, 高仁吉, 梁增发, 谢晋, 黄浩, 曾繁东, 金保锋, 蔡一霞, 姜俊红, 王维. 带茎采烤对上部烟叶品质及代谢物的影响[J]. 作物杂志, 2025, (5): 184–194
[2] 武慧娟, 耿小丽, 李德明, 周栋昌, 付萍, 刘乾, 杜笑村. 叶面喷施不同铁肥对燕麦种子产量及其构成因素的影响[J]. 作物杂志, 2025, (5): 233–238
[3] 王亮, 王睿, 朱金成, 桑玉伟, 史彪, 郭嘉帅, 焦灰敏, 何宗铃, 水涌. 50份花生品种(系)幼苗期耐盐性分析[J]. 作物杂志, 2025, (5): 35–41
[4] 张金东, 王成, 卢环, 曾玲玲, 张巩亮, 孙浩月, 刘悦, 杨贺麟, 侯晓敏. 盐碱胁迫下不同基因型绿豆对外源BR的响应[J]. 作物杂志, 2025, (5): 54–60
[5] 陈萍, 罗园园, 王娟, 孙权, 马玲芳, 马文礼, 谢静波. 燕麦萌发期对混合盐碱胁迫的响应及耐受性评价[J]. 作物杂志, 2025, (5): 61–66
[6] 周琦, 张靖, 王振龙, 施志国, 邓超超, 常浩, 柳洋, 周彦芳. 绿肥还田和减量施氮对甘肃河西灌区土壤质量及燕麦产量和品质的影响[J]. 作物杂志, 2025, (4): 188–196
[7] 褚霈宇, 韩喜财, 王盼, 李多, 朱浩, 金喜军, 宋鑫玲, 曹洪勋, 夏尊民, 王晓楠. 水分胁迫下CaCl2对亚麻幼苗生长及生理的影响[J]. 作物杂志, 2025, (4): 206–213
[8] 陶祖豪, 王慰亲, 郑华斌, 向军, 唐启源. 水肥及化控对晚稻有序机抛秧秧苗素质的影响[J]. 作物杂志, 2025, (4): 224–230
[9] 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245–250
[10] 李家豪, 贾永红, 连世昊, 刘跃, 于姗, 田文强, 王子骞, 张金汕, 石书兵. 调环酸钙和施磷量对冬小麦生长、干物质积累及产量的影响[J]. 作物杂志, 2025, (3): 165–171
[11] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[12] 黄明, 付鑫鑫, 张振旺, 张军, 李友军. 种子大小对旱地小麦种子萌发、幼苗特性和抗旱性的影响[J]. 作物杂志, 2025, (3): 255–262
[13] 付国庆, 纪军建, 霍阿红, 陈令玮, 王瑶, 左振兴, 葛军勇, 寇淑君. 基于DUS测试性状对我国选育裸燕麦的分析[J]. 作物杂志, 2025, (3): 45–51
[14] 雷云, 刘月炎, 王健健. CO2加富和供磷水平对辣椒苗期生长及营养元素吸收的影响[J]. 作物杂志, 2025, (2): 189–195
[15] 张丽娜, 杨文平, 苏苗, 张之玄, 李军辉, 陈杰, 高志强, 杨珍平. 叶面施硒对燕麦籽粒营养品质的影响[J]. 作物杂志, 2025, (2): 196–206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!