作物杂志,2017, 第4期: 67–71 doi: 10.16035/j.issn.1001-7283.2017.04.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

水稻粉质胚乳突变体flo(t)的子粒性状及淀粉理化特性分析

何冰纾1,2,钟雨越1,乔永利2,郭东伟1   

  1. 1 西北农林科技大学农学院,712100,陕西杨凌
    2 中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2017-03-09 修回日期:2017-05-22 出版日期:2017-08-15 发布日期:2018-08-26
  • 通讯作者: 郭东伟
  • 作者简介:何冰纾,硕士研究生,主要从事作物分子育种研究
  • 基金资助:
    中国农业科学院科技创新工程项目

Analysis of Grain Traits and Physicochemical Properties of Starch in Rice Floury Endosperm Mutant flo(t)

He Bingshu1,2,Zhong Yuyue1,Qiao Yongli2,Guo Dongwei1   

  1. 1 College of Agronomy,Northwest A&F University,Yangling 712100,Shaanxi,China;
    2 Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2017-03-09 Revised:2017-05-22 Online:2017-08-15 Published:2018-08-26
  • Contact: Dongwei Guo

摘要:

淀粉是水稻胚乳的主要贮藏物质,其理化特性的解析对开展稻米外观和食味品质改良具有非常重要的理论和实践意义。本研究从烷化剂N-甲基N-亚硝基脲(MNU)处理的粳稻品种Hwacheong突变体库中,筛选得到一个稳定遗传的粉质胚乳突变体flo(t)。与野生型相比,flo(t)突变体的株高和穗粒数极显著、显著降低,种子胚乳表现为白色不透明粉质,千粒重降低15%,直链淀粉含量显著降低,但脂质含量显著提高。对成熟子粒扫描电镜观察发现,flo(t)突变体由大小不一、排列松散、间隙较大的淀粉粒组成,且淀粉的晶体结构与热力学特性也发生显著变化。

关键词: 水稻, 淀粉, 粉质胚乳, 理化特性

Abstract:

Starch is the main storage material of rice endosperm. The analysis of its physical and chemical properties has great theoretical and practical significance for the appearance and taste improvement of rice. In this study, a stable inherited powdery endosperm mutant flo(t), the mutant plant table was screened from the Hwacheong mutant library of japonica rice treated with N-methyl N-nitrosourea (MNU). In the phenotypic aspect of the mutant plants, the plant height and the number of grains per spike were significantly lower than the wild type, and the seed endosperm showed white opacity. Compared with wild type, the 1000-grain weight of flo(t) mutant was reduced by 15%, and the content of amylose were decreased, but the content of protein and lipid increased significantly. The results of scanning electron microscopy showed that the flo(t) mutant consisted of regular and rounded starch granules with different sizes and large intervals, and the crystal structure and thermodynamic properties of starch were also changed significantly.

Key words: Rice, Starch, Floury endosperm, Physicochemical property

表1

突变体与野生型的农艺性状"

类型
Type
粒长(mm)
Grain length
粒宽(mm)
Grain width
粒厚(mm)
Grain thickness
千粒重(g)
1000-grain weight
穗数
No. of panicles/plant
穗粒数
No. of grains/panicle
株高(cm)
Plant height
主穗长(cm)
Panicle length
野生型Wild-type 6.74±0.28 3.02±0.23 2.24±0.01 20.86±0.22 10.4±1.12 81.0±11.14 70.4±1.28 17.40±0.80
突变体Mutant 6.68±0.32 3.17±0.23 2.12±0.01 17.61±0.24** 12.2±0.76 72.0±4.00* 63.2±1.44** 15.88±0.83

图1

野生型与突变体理化性质 *表示突变体与野生型差异显著,**表示突变体与野生型差异极显著"

图2

胚乳淀粉颗粒晶体衍射"

图3

胚乳淀粉颗粒DSC分析"

表2

热特性参数"

类型Type 起始温度Initial temperature (℃) 峰值温度Peak temperature(℃) 终止温度Termination temperature(℃) 热焓值Enthalpy(J/g)
野生型Wild-type 30.1 119.5 252.3 305
突变体Mutant 30.7 123.5 222.6 207
[1] Liu F, Ren Y L, Wang Y H , et al. OsVPS9A functions cooperatively with OsRAB5A to regulate post-golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Molecular Plant, 2013,6(10):1918-1932.
doi: 10.1093/mp/sst081
[2] Hikaru S, Kensuke S , et al.Takashi T. Mutation of the plastidial a-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell, 2008,20(7):1833-1849.
doi: 10.1105/tpc.107.054007
[3] 康国章, 王永华, 郭天财 , 等. 植物淀粉合成的调控酶. 遗传, 2006,28(1):110-116.
doi: 10.3321/j.issn:0253-9772.2006.01.020
[4] Aiko N, Yasunori N, Naoki T , et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology, 2001,127(10):459-472.
doi: 10.1104/pp.010127
[5] Takayuki S, Perigio B F, Francisco J , et al. Chlorella starch branching enzyme II (BEII) can complement the function of BEIIb in rice endosperm. Plant Cell Physiology, 2009,50(6):1062-1074.
doi: 10.1093/pcp/pcp058
[6] Zeng D L, Yan M X, Wang Y H , et al. Du1,encoding a novel Prp1 protein,regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Molecular Biology 2007,65(8):501-509.
doi: 10.1007/s11103-007-9186-3
[7] Masayuki I, Yasuyuki M, Aya T , et al. Du3,a mRNA cap-binding protein gene,regulates amylose content in japonica rice seeds. Plant Biotechnology, 2008,25(7):483-487.
doi: 10.1016/j.fm.2004.01.015
[8] 郭立泉, 辛若竹, 鲍钧镝 , 等. 大米中直链淀粉含量快速测定方法的探讨. 粮食与饲料工业, 2010,12(11):39-41.
[9] 康海岐, 常红叶 . 杂交水稻主要亲本材料的垩白性状及其胚乳结构电镜扫描. 中国农学通报, 2007,23(4):180-185.
[10] 赵思明, 熊善柏 . 稻米淀粉的理化特性研究I.不同类型稻米淀粉的理化特性. 中国粮油学报, 2002,17(6):39-43.
[11] Stading M, Hermansson A M, Gatenholm P . Structure,mechanical and barrier properties of amylose and amylopectin films. Carbohydrate Polymers, 1998,36(2-3):217-224.
doi: 10.1016/S0144-8617(98)00025-3
[12] 石海信, 熊拯, 方怀义 . 淀粉物态性质分析中DSC的应用. 广东化工, 2009,36(3):13-15.
[13] Cameron D K, Wang Y J . A better understanding of factors that affect the hardness and stiekiness of long -grain rice. Cereal Chemistry Journal, 2005,82(2):113-119.
doi: 10.1094/CC-82-0113
[14] Saiyavit V, Sujin S, Warunee V , et al. Effect of amylase content on gelatinization,retrogradation and pasting properties of flours from different cultivars of Thai rice. Stareh, 2003,55(9):410-415.
[15] Sung-Ryul K, Jung-Il Y, Sunok M , et al. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. The Plant Journal, 2009,59(4):738-749.
doi: 10.1111/tpj.2009.59.issue-5
[16] Wang Y H, Ren Y L, Liu X , et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. The Plant Journal, 2010,64(9):812-824.
doi: 10.1111/tpj.2010.64.issue-5
[17] David R H, Marisa S O, Li B L , et al. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 2007,19(8):2569-2582.
doi: 10.1105/tpc.107.053538
[18] Wang G F, Wang F, Wang G , et al. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell, 2012,24(8):3447-3462.
doi: 10.1105/tpc.112.101360
[19] Mo Y J, Jeung J U, Shin Y S , et al. Agronomic and genetic analysis of suweon 542,a rice floury mutant line suitable for dry milling. Rice, 2013,6(9):37-48.
doi: 10.1186/1939-8433-6-37 pmid: 4883716
[20] Kong X, Zhu P, Sui Z , et al. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinization temperature combinations. Food Chemistry, 2015,172(4):433-440.
doi: 10.1016/j.foodchem.2014.09.085
[21] Chen P, Wang K, Kuang Q R , et al. Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules, 2016,87(6):28-33.
doi: 10.1016/j.ijbiomac.2016.01.119
[22] 蔡金文 . 普通水稻淀粉结构和功能特性研究. 扬州:扬州大学, 2015.
doi: 10.7666/d.Y2909185
[23] Ambigaipalan P . Structure of faba bean,black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Research International, 2011,44(9):2962-2974.
doi: 10.1016/j.foodres.2011.07.006
[24] She K C, Kusano H, Koizumi K , et al. A novel factor floury endosperm 2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010,22(10):3280-3294.
doi: 10.1105/tpc.109.070821
[25] Qiao Y L, Song-I L, Piao R H , et al. Fine mapping and candidate gene analysis of the floury endosperm gene,FLO(a),in rice. Molecules and Cells, 2010,29(2):167-174.
doi: 10.1007/s10059-010-0010-6 pmid: 20016946
[26] Nishio T, Iida S . Mutant having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1993,86(2/3):317-321.
doi: 10.1007/BF00222095 pmid: 24193476
[27] Kang H G, Park S, Matsuoka M , et al. White-core endosperm floury endosperm 4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal, 2005,42(6):901-911.
doi: 10.1111/tpj.2005.42.issue-6
[28] Nayeon R, Chul Y, Cheon-Seok P , et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007,26(10):1083-1095.
doi: 10.1007/s00299-007-0309-8
[29] Peng C, Wang Y H , Floury endosperm 6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014,77(10):917-930.
doi: 10.1111/tpj.2014.77.issue-6
[30] Martha G J, Kay D, Alan M M . Starch synthesis in the cereal endosperm. Plant Biology, 2003,6(3):215-222.
doi: 10.1016/S1369-5266(03)00042-6 pmid: 12753970
[31] Hannah L C, Martha J . The complexities of starch biosynthesis in cereal endosperms. Biotechnology, 2008,19:160-165.
doi: 10.1016/j.copbio.2008.02.013 pmid: 18400487
[32] Umemoto T, Yano M, Satoh H , et al. Mappingof a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theoretical and Applied Genetics, 2002,104:1-8.
doi: 10.1007/s001220200000
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[7] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79–83
[8] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[9] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[10] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[11] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[12] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[13] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[14] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[15] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .