作物杂志,2020, 第2期: 20–27 doi: 10.16035/j.issn.1001-7283.2020.02.004

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

高粱硬脂酰-ACP脱氢酶基因(SbSAD)家族鉴定及不同发育阶段表达分析

赵训超,徐晶宇(),盖胜男,魏玉磊,许晓萱,丁冬,刘梦,张今杰,邵文静   

  1. 黑龙江八一农垦大学农学院/黑龙江省现代农业栽培技术与作物种质改良重点实验室,163319,黑龙江大庆
  • 收稿日期:2019-08-19 修回日期:2019-10-14 出版日期:2020-04-15 发布日期:2020-04-13
  • 通讯作者: 徐晶宇 E-mail:xujingyu2003@hotmail.com
  • 作者简介:赵训超,主要从事作物脂类代谢调控及逆境分子生物学研究,E-mail:zhaoxunchao2017@163.com
  • 基金资助:
    黑龙江八一农垦大学优势特色学科建设项目专项资金(2042070002)

Identification of Stearyl -ACP Desaturase Gene (SbSAD) Family and Their Expression Analysis at Different Developmental Stages in Sorghum

Zhao Xunchao,Xu Jingyu(),Gai Shengnan,Wei Yulei,Xu Xiaoxuan,Ding Dong,Liu Meng,Zhang Jinjie,Shao Wenjing   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Daqing 163319, Heilongjiang, China
  • Received:2019-08-19 Revised:2019-10-14 Online:2020-04-15 Published:2020-04-13
  • Contact: Jingyu Xu E-mail:xujingyu2003@hotmail.com

摘要:

硬脂酰-ACP脱氢酶是形成不饱和脂肪酸的关键酶。利用拟南芥蛋白序列作为比对序列在NCBI和Phytozome数据库进行Blastp同源比对,共鉴定11个SbSADs基因。对SbSAD基因家族进行蛋白特性、进化关系、不同发育阶段表达、基因结构、保守基序、染色体定位、基因二级和三级结构、启动子区的顺式元件及种子发育阶段表达分析,结果显示,SbSADs基因编码区为1 134~1 290bp,其编码蛋白的氨基酸数为377~449,分子量最大为48.0kDa,最小为39.8kDa,等电点为5.26~8.76;根据系统发育树,将SbSAD基因家族分为3个亚族,其中亚族I在不同组织发育阶段表达量较高;11个SbSADs基因不均等地定位在高粱1、2、3、4、6、7和10号染色体上;SbSADs蛋白二级结构均以α-螺旋和无规则卷曲为主,三级结构预测显示,除SbSAD8外,其余SbSADs的蛋白三级结构高度相似;11个SbSADs基因的启动子区与低温胁迫相关的元件数量高度富集。SbSAD5基因在种子发育5和10d均有较高的表达量。

关键词: 高粱, 硬脂酰-ACP脱氢酶, 生物信息学, 基因家族

Abstract:

Stearyl-ACP desaturase is a key enzyme to form unsaturated fatty acids. A total of 11 full-length SbSADs genes were identified by Blastp from the NCBI and Phytozome database using the SbSADs genes as queries. The protein properties, phylogenetics, tissue-specific expression patterns of SbSADs, gene structure, conserved motifs, chromosome mapping, secondary and tertiary structures, cis-elements in promoter regions and their expression level at various seed development stages were analyzed. The results showed that open reading frame of SbSADs genes was among 1 134-1 290bp, the number of amino acids of their encoded proteins ranged from 377 to 449, the maximum molecular weight was 48.0kDa and the minimum was 39.8kDa, and the isoelectric point was 5.26-8.76. According to phylogenetic analysis, SbSADs were divided into 2 sub-groups, and the expression level of sub-group I was higher in different tissues. SbSADs genes were unequally mapped on 1, 2, 3, 4, 6, 7 and 10 chromosomes of sorghum. The prediction of secondary structure showed that SbSADs proteins was mainly composed of α-helix and irregular coil, while the tertiary structures prediction showed that except SbSAD8, the rest of SbSADs proteins were highly similar. In the SbSADs gene family, there were a number of cis-elements related to low temperature stress. The expression of SbSAD5 gene was higher at 5 and 10d of seed development.

Key words: Sorghum, Stearyl-ACP desaturase, Bioinformatics, Gene family

表1

高粱SbSADs蛋白特性分析"

基因
Gene
登录号
ID
编码区(bp)
Open reading frame
氨基酸数
Number of amino acid
分子量(kDa)
Molecular weight
等电点
Isoelectric point
SbSAD1 Sobic.001G265300 1 290 429 47.5 8.76
SbSAD2 Sobic.001G280700 1 194 397 44.7 7.15
SbSAD3 Sobic.001G334501 1 350 449 48.0 6.47
SbSAD4 Sobic.002G258500 1 245 414 44.5 6.79
SbSAD5 Sobic.003G377100 1 143 380 42.7 6.62
SbSAD6 Sobic.003G404000 1 194 397 45.1 6.44
SbSAD7 Sobic.004G153300 1 251 416 46.7 6.62
SbSAD8 Sobic.004G157550 1 134 377 39.8 5.26
SbSAD9 Sobic.006G048700 1 179 392 44.7 6.53
SbSAD10 Sobic.007G071600 1 272 423 46.9 8.18
SbSAD11 Sobic.010G235300 1 233 410 45.6 6.71

图1

水稻、玉米、拟南芥和高粱SADs蛋白系统进化关系"

图2

SbSAD基因家族在高粱不同发育阶段不同组织中的表达量"

图3

高粱SbSAD基因家族结构分析"

图4

SbSADs蛋白保守基序分析"

图5

SbSADs基因的染色体分布"

表2

SbSADs蛋白二级结构的氨基酸数目和比例"

蛋白
Protein
α-螺旋α-helix 延长链Extension chain β-折叠β-sheet 无规则卷曲Random coil
数量
Amount
比例(%)
Proportion
数量
Amount
比例(%)
Proportion
数量
Amount
比例(%)
Proportion
数量
Amount
比例(%)
Proportion
SbSAD1 221 51.52 46 10.72 45 10.49 117 27.27
SbSAD2 206 51.89 40 10.08 29 7.30 122 30.73
SbSAD3 216 48.11 57 12.69 54 12.03 122 27.17
SbSAD4 212 51.21 49 11.84 38 9.18 115 27.78
SbSAD5 215 56.58 40 10.53 39 10.26 86 22.63
SbSAD6 210 52.90 49 12.34 29 7.30 109 27.46
SbSAD7 219 52.64 32 7.69 30 7.21 135 32.45
SbSAD8 153 40.58 54 14.32 24 6.37 146 38.73
SbSAD9 205 53.66 38 9.95 32 8.38 107 38.73
SbSAD10 225 53.19 51 12.06 39 9.22 108 25.53
SbSAD11 243 59.27 31 7.56 43 10.49 93 22.68

图6

SbSADs蛋白二级结构(A)和三级结构(B)的预测结果"

图7

SbSADs基因启动子逆境相关顺式作用元件数量分布"

图8

SbSADs在种子不同发育时期的表达"

[1] 杨士春 . 甜高粱籽粒中脂肪酸含量的气相色谱分析. 中国粮油学报, 2012,27(11):100-104.
[2] 张国琴, 葛玉彬, 张正英 , 等. 高粱抗旱研究综述. 甘肃农业科技, 2018,56(6):67-72.
[3] O'Byrne D J, Knauft D A, Shireman R B . Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids, 1997,32(7):687-695.
[4] Carrillo C, Del M C M, Roelofs H , et al. Activation of human neutrophils by oleic acid involves the production of reactive oxygen species and a rise in cytosolic calcium concentration:a comparison with N-6 polyunsaturated fatty acids. Cellular Physiology and Biochemistry, 2011,28(2):329-338.
[5] 袁蕊, 敖宗华, 丁海龙 , 等. 高粱中脂肪酸和低分子有机酸气相色谱测定. 酿酒, 2011,38(4):42-43.
[6] Ohlrogge J, Browse J . Lipid biosynthesis. The Plant Cell, 1995,7(7):957-970.
[7] Xuan W Y, Zhang Y, Liu Z Q , et al. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana. Genetics and Molecular Research, 2015,14(3):9922-9931.
[8] Gonzalez-Thuillier I, Venegas-Caleron M, Sanchez R , et al. Sunflower (Helianthus annuus) fatty acid synthase complex:beta-hydroxyacyl-[acyl carrier protein] dehydratase genes. Planta, 2016,243(2):397-410.
[9] Rodriguez M F, Sanchez-Garcia A, Salas J J , et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa,Macadamia tetraphylla and Dolichandra unguiscati. Journal of Plant Physiology, 2015,178(15):35-42.
[10] Li-Beisson Y, Shorrosh B, Beisson F , et al. Acyl-lipid metabolism. The Arabidopsis Book, 2013,11:e0161.
[11] Kachroo A, Shanklin J, Whittle E , et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Molecular Biology, 2007,63(2):257-271.
[12] Ruddle P N, Whetten R, Cardinal A , et al. Effect of a novel mutation in a △9-stearoyl-ACP-desaturase on soybean seed oil composition. Theoretical and Applied Genetics, 2013,126(1):241-249.
[13] Jung S, Tate P L, Horn R , et al. The phylogenetic relationship of possible progenitors of the cultivated peanut. Journal of Heredity, 2003,94(4):334-340.
[14] Knutzon D S, Thompson G A, Radke S E , et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(7):2624-2628.
[15] Slocombe S P, Cummins I, Jarvis R P , et al. Nucleotide sequence and temporal regulation of a seed-specific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Molecular Biology, 1992,20(1):151-155.
[16] Shanklin J, Somerville C . Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proceedings of the National Academy of Sciences of the United States of America, 1991,88(6):2510-2514.
[17] McKeon T A, Stumpf P K . Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. The Journal of Biological Chemistry, 1982,257(20):12141-12147.
[18] Zhang Y, Maximova S N, Guiltinan M J . Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,Theobroma cacao L. Frontiers in Plant Science, 2015,6:239-251.
[19] Lightner J, Wu J, Browse J . A mutant of Arabidopsis with increased levels of stearic acid. Plant Physiology, 1994,106(4):1443-1451.
[20] Osorio J, Fernándezmartínez J, Mancha M , et al. Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Science, 1995,35(3):739-742.
[21] Craig W, Lenzi P, Scotti N , et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Research, 2008,17(5):769-782.
[22] Byfield G E, Xue H, Upchurch R G . Two genes from soybean encoding soluble Δ9 stearoyl-ACP desaturases. Crop Science, 2006,46(2):840-846.
[23] Murata N, Ishizaki-Nishizawa O, Higashi S , et al. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992,356:710-713.
[24] Kodama H, Horiguchi G, Nishiuchi T , et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiology, 1995,107(4):1177-1185.
[25] Orlova I V, Serebriiskaya T S, Popov V , et al. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant and Cell Physiology, 2003,44(4):447-450.
[26] Dong C G, Cao N, Zhang Z G , et al. Characterization of the fatty acid desaturase genes in cucumber:structure,phylogeny,and expression patterns. PLoS ONE, 2016,11(3):e0149917.
[27] Tocher D R, Leaver M J, Hodgson P A . Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Progress in Lipid Research, 1998,37(2/3):73-117.
[28] Han Y, Xu G, Du H , et al. Natural variations in stearoyl-acp desaturase genes affect the conversion of stearic to oleic acid in maize kernel. Theoretical and Applied Genetics, 2017,130(1):151-161.
[29] Shang X, Cheng C, Ding J , et al. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Molecular Genetics and Genomics, 2017,292(1):173-186.
[30] Merlo A O, Cowen N, Delate T , et al. Ribozymes targeted to stearoyl-ACP △9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Plant Cell, 1998,10:1603-1621.
[1] 高杰,李青风,李晓荣,封广才,彭秋. 贵州不同年代糯高粱品种(系)干物质生产及光能利用特性差异分析[J]. 作物杂志, 2020, (1): 41–46
[2] 范昕琦,王海燕,聂萌恩,赵兴奎,张一中,杨慧勇,张晓娟,梁笃,段永红,柳青山. EMS诱变对高粱出苗及农艺性状的影响[J]. 作物杂志, 2020, (1): 47–54
[3] 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 33–42
[4] 唐桃霞,王致和,施志国,常瑛,张英英,李彦荣. 不同基因型甜高粱对重金属的吸收规律研究[J]. 作物杂志, 2019, (6): 50–56
[5] 梁晓红,张瑞栋,黄敏佳,刘静,曹雄. 覆膜与施氮互作对高粱产量及水氮利用效率的影响[J]. 作物杂志, 2019, (5): 135–142
[6] 王劲松,董二伟,焦晓燕,武爱莲,白文斌,王立革,郭珺,韩雄,柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响[J]. 作物杂志, 2019, (5): 166–172
[7] 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183–190
[8] 高杰,李青风,李晓荣,封广才,彭秋. 贵州省不同年代糯高粱品种(系)农艺性状演变分析[J]. 作物杂志, 2019, (4): 17–23
[9] 李春宏,陆相龙,张培通,苏衍菁,王仪明,郭文琦,殷剑美,韩晓勇,王立,火恩杰. 防除甜高粱田杂草的除草剂筛选[J]. 作物杂志, 2018, (6): 158–161
[10] 吕亮杰,陈希勇,张业伦,刘茜,王莉梅,马乐,李辉. 小麦GASA基因家族生物信息学分析[J]. 作物杂志, 2018, (6): 58–67
[11] 张一中,周福平,张晓娟,邵强,杨彬,柳青山. 高粱种质材料光合特性和水分利用效率鉴定及聚类分析[J]. 作物杂志, 2018, (5): 45–53
[12] 张瑞栋,曹雄,岳忠孝,梁晓红,刘静,黄敏佳. 氮肥和密度对高粱产量及氮肥利用率的影响[J]. 作物杂志, 2018, (5): 110–115
[13] 张建华,郭瑞峰,曹昌林,范娜,江佰阳,李光,史丽娟,彭之东,白文斌. 几种茎叶除草剂防除高粱田杂草药效和安全性研究[J]. 作物杂志, 2018, (5): 162–166
[14] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138–142
[15] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1 –7 .
[2] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[3] 孙悦,刘斌,傅漫琪,王婧,王小慧,陈阜. 1985-2015年我国胡麻子生产时空动态变化[J]. 作物杂志, 2019, (6): 8 –13 .
[4] 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 1 –8 .
[5] 张新,曹丽茹,魏良明,张前进,周柯,王振华,鲁晓民. 玉米葡萄糖转运蛋白基因ZmGLUT-1表达特征分析及互作预测[J]. 作物杂志, 2020, (1): 22 –28 .
[6] 潘磊,许杰,杨帅,陈云松,陈连红,马文广. 不同贮藏温度条件下3个烟草品种花粉活力、形态及生理指标变化[J]. 作物杂志, 2020, (2): 112 –118 .
[7] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140 –146 .
[8] 江洋,汪金平,曹凑贵. 稻田种养绿色发展技术[J]. 作物杂志, 2020, (2): 200 –204 .
[9] 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 1 –8 .
[10] 王梅春,连荣芳,肖贵,墨金萍,曹宁. 我国小扁豆研究综述及产业发展对策[J]. 作物杂志, 2020, (1): 13 –16 .