作物杂志,2022, 第1期: 44–49 doi: 10.16035/j.issn.1001-7283.2022.01.006

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

基于SSR标记的胡麻粗脂肪及脂肪酸组分的关联分析

高凤云(), 斯钦巴特尔(), 周宇, 贾霄云, 苏少锋, 赵小庆, 金晓蕾   

  1. 内蒙古自治区农牧业科学院特色作物研究所/内蒙古自治区农牧业科学院生物技术研究所,010031,内蒙古呼和浩特
  • 收稿日期:2021-04-07 修回日期:2021-12-21 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 斯钦巴特尔
  • 作者简介:高凤云,研究方向为胡麻遗传育种,E-mail: gaofengyunnm@163.com
  • 基金资助:
    内蒙古自然科学基金(2019ZD04);内蒙古自然科学基金(2020MS03095);内蒙古农牧业创新基金(2019CXJJ10);国家自然科学基金(31760400);科技计划项目(2021GG0375)

Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers

Gao Fengyun(), Siqin Bateer(), Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei   

  1. Institute of Characteristic Crops, Inner Mongolia Academy of Agriculture and Husbandry Sciences/Institute of Biotechnology, Inner Mongolia Academy of Agriculture and Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2021-04-07 Revised:2021-12-21 Online:2022-02-15 Published:2022-02-16
  • Contact: Siqin Bateer

摘要:

为了深入了解胡麻种质粗脂肪及脂肪酸组分的遗传变异,以230份胡麻种质为研究对象,利用广义线性模型(GLM)进行关联分析,结果表明,粗脂肪和5种脂肪酸含量的变异系数为7.39%~22.67%,遗传多样性指数为2.66~2.80;粗脂肪和亚麻酸含量的相关系数(0.669)最大;筛选出了30对SSR引物,共扩增出365个条带,有效等位基因数在1.2168~1.8320,引物多态性含量为0.2489~0.6257;在群体结构K=4时,230份胡麻资源可分为4个类群;5种脂肪酸显著关联的SSR位点22个,粗脂肪含量相关的SSR位点4个,说明230份胡麻种质的遗传多样性丰富,5种脂肪酸和粗脂肪含量与SSR标记显著关联。

关键词: 胡麻, 品质, 粗脂肪, 脂肪酸组分, 关联分析, SSR

Abstract:

In order to understand the genetic variation of crude fat and fatty acid components in flax germplasm, the generalized linear model (GLM) was used to analyze the genetic variation of 230 flax germplasms. The results showed that the variation coefficients of crude fat and five fatty acids were 7.39%-22.67%, and the genetic diversity indexes were 2.66-2.80. The correlation coefficient between crude fat and linolenic acid was the highest (0.669). Thirty pairs of SSR primers were selected, and a total of 365 bands were amplified. The number of effective alleles ranged from 1.2168 to 1.8320, and the polymorphism of primers ranged from 0.2489 to 0.6257. The 230 flax resources could be divided into four groups when population structure K=4. There were 22 SSR loci significantly associated with five fatty acids, and four SSR loci were detected in crude fat. These results indicated that the genetic diversity of 230 flax germplasms was rich, and the contents of five fatty acids and crude fat were significantly associated with SSR markers.

Key words: Flax, Quality, Crude fat, Fatty acid components, Correlation analysis, SSR

表1

30对引物序列

引物名称Primer name 序列(5′-3′)Sequence (5′-3′) 引物名称Primer name 序列(5′-3′)Sequence (5′-3′)
Lub4 TGGAAGTCAACGAGATCGAA
ACAGCAGCCTCCGTGTTTAT
Lu400 GAATGGCTCCTCGAAAGATG
ATTAGACGGGGAGCTTGAGG
Lub13 CGAGGATGACAATGATGACG
CAGCAGCAGCATCAGGTAAA
Lu422 GTTAATCGCCCCTGAACTGA
TTGCAGTTACAACAGCAGCA
Lua37 CACAGCACAGACACAGACCA
GGCGGCTTTAAGAAGTGAAA
Lu462 AATGAGCACAACAACAGCAAG
AGCAGCTCTGGACTTGAGGA
Lua69 CTAAACCACACCCCCATCAC
AAAGTGGGGAAATTGGGCTA
Lu465 CAAGACTTGTAGGGCGGAAC
CGTCGGCCTATGAGAAGAAC
Lua83B CCCTCATTTTTCTCCTTCCA
CAGGCGTTACAGTTTCCCATA
Lu511 CATTGACCTCCCATTTCACC
TCAAGGAAGGCTCGTTGTTC
Lua125a GCCTTTGGAGGGCTTAACTT
ACAATCCCAACATTCCCAAA
Lu554 GGCCAAGGATATAGCACGAA
TTGGACCTTAAGCCCAGATG
Lu146 AACCTGAACCAGACGAGCAT
AGGTGGATCCAGCAAGCTAA
Lu598 TAGAGGCCAGCTAGCAGCA
AAAAGCTTCCCTTTGGTGGT
Lu176 TCCATCCTCTGCATTTGTGA
AAGACGAGTGCCCATTCCTA
Lu661 AAGACAACAACCTGGGGAAA
GATTCAGCAGCCGAGAGTG
Lu203a CCTTTTCACGCAGAGCTACC
GCTTCCGTAATCCTCTTCCA
Lu747 CGGCTGAGGATTACTTGTCG
TAAACTCCACTTCCCCCAAC
Lu263 GCCGAAAGTTGAAGCATAGG
TGTTGCTTGTTGGCAAACTG
Lu765B CCTCATTCCGCTCAGCAA
CGAAAATGGGGAAGATGATG
Lu266 ACGACACCGGATTTATCTGC
ACGTGTCCTCCACATGCTCT
Lu771 ATACTCCTCCGACGCTGATG
AACCTCGAAACGAATGATGC
Lu273 CGATGATCACTGGACGGATA
CATAGCTTCAAAGGCAGCAC
Lu785 CGAGGCATCATATTTTCTCTTG
ATCAGCAATCAATCGCATCA
Lu291 GGAAATTCCAAGTTCCCAGT
AGTTTCGCTATTCCGTCTGC
Lu787 AAGACCACCACAAGGGACAG
TGAACCATAGCGATCATCACA
Lu316 TCCTCGGAAGAAGAAGACGA
GAGAGGAATCATGGCGGATA
Lu840 ATTCCTTTTTGAGGGCGAGT
ACAGCTGGAACTGGAGAGGA
Lu330 TCTTGTACATTGCGGCACTC
GCACCAGATGAGGAAGAGGA
Lu849 CGACACAGCATTCAATGACC
CAGACCTTGGAGCTTTGGAG

表2

230份胡麻种质品质性状的统计分析

品质性状
Quality characteristic
最小值
Min. (%)
最大值
Max. (%)
均值
Mean (%)
标准差
Standard deviation
变异系数
CV (%)
遗传多样性指数
Genetic diversity index
粗脂肪含量Crude fat content 35.51 43.21 39.01 2.88 7.39 2.80
棕榈酸含量Palmatic acid content 3.00 6.27 4.45 0.75 16.28 2.74
硬脂酸含量Stearic acid content 3.65 13.96 7.82 1.77 22.67 2.66
油酸含量Oleic acid content 6.52 32.68 20.26 3.66 18.08 2.72
亚油酸含量Linoleic acid content 11.30 20.20 16.24 1.91 11.74 2.78
亚麻酸含量Linolenic acid content 39.35 65.29 49.67 4.54 9.14 2.80

表3

胡麻种质品质性状之间的相关性分析

品质性状
Quality characteristic
棕榈酸含量
Palmatic acid
content
硬脂酸含量
Stearic acid
content
油酸含量
Oleic acid
content
亚油酸含量
Linoleic acid
content
亚麻酸含量
Linolenic acid
content
粗脂肪含量
Crude fat
content
棕榈酸含量Palmatic acid content 1
硬脂酸含量Stearic acid content -0.429** 1
油酸含量Oleic acid content 0.360** 0.054 1
亚油酸含量Linoleic acid content 0.147* 0.394** -0.03 1
亚麻酸含量Linolenic acid content 0.308** -0.031 -0.191** -0.395** 1
粗脂肪含量Crude fat content 0.483** 0.106 0.388* 0.273** 0.669** 1

表4

30对SSR引物在230份胡麻种质的扩增结果

引物名称
Primer name
多态性位点数
Number of
polymorphic loci
有效等位基因数
Number of
effective alleles
引物PIC
Primer PIC
引物名称
Primer name
多态性位点数
Number of
polymorphic loci
有效等位基因数
Number of
effective alleles
引物PIC
Primer PIC
Lu4 7 1.4053 0.4253 Lu400 13 1.3216 0.3423
Lu13 11 1.4162 0.4085 Lu422 9 1.7526 0.6117
Lu37 11 1.8230 0.6257 Lu462 19 1.4617 0.4422
Lu69 8 1.1991 0.2489 Lu465 13 1.5082 0.4545
Lu83B 13 1.6207 0.5440 Lu511 10 1.3910 0.3927
Lu125a 12 1.2168 0.2765 Lu554 5 1.5741 0.4998
Lu146 15 1.4852 0.4765 Lu598 15 1.4779 0.4105
Lu176 9 1.3284 0.3788 Lu661 11 1.2276 0.2896
Lu203a 13 1.5499 0.5059 Lu747 14 1.4020 0.4183
Lu263 10 1.3633 0.3841 Lu765B 14 1.4558 0.4320
Lu266 6 1.4834 0.4819 Lu771 10 1.3083 0.3340
Lu273 12 1.2813 0.3548 Lu785 14 1.3927 0.3997
Lu291 18 1.3264 0.3638 Lu787 14 1.6178 0.5364
Lu316 17 1.3894 0.3878 Lu840 16 1.4884 0.4625
Lu330 10 1.5515 0.4904 Lu849 15 1.4865 0.4571

图2

引物Lu840在24份胡麻种质中的扩增结果

图3

ΔK随K值的变化曲线

图4

230份胡麻种质群体结构分析

表5

胡麻种质品质性状与SSR多态性位点的关联分析

品质性状
Quality characteristic
SSR位点
SSR loci
P
P-value
表型变异解释率
Phenotypic variation (%)
品质性状
Quality characteristic
SSR位点
SSR loci
P
P-value
表型变异解释率
Phenotypic variation (%)
粗脂肪含量
Crude fat content
S116 6.69 3.03 硬脂酸含量
Stearic acid content
S36 5.64 3.01
S121 7.89 2.91 S241 6.58 2.91
S230 9.39 2.79 S354 8.15 2.76
S158 9.97 2.74 S83 8.41 2.73
棕榈酸含量
Palmatic acid content
S190 6.89 2.72 S216 9.33 2.66
S110 7.52 2.66 亚油酸含量
Linoleic acid content
S99 6.13 3.26
S51 7.71 2.61 S159 6.31 3.24
S254 8.13 2.52 S167 6.49 3.22
S60 9.39 2.45 S116 6.75 3.19
油酸含量
Oleic acid content
S342 5.20 3.44 S28 6.91 3.17
S115 7.30 3.17 S160 7.67 3.09
S353 8.64 3.04 S347 8.51 3.01
亚麻酸含量
Linolenic acid content
S347 5.28 3.35 S304 9.84 2.90
[1] 党占海, 赵玮. 中国现代农业产业可持续发展战略研究胡麻分册. 北京: 中农业出版社, 2016.
[2] 张辉, 曲文祥, 李书田. 内蒙古特色作物. 北京: 中国农业科学技术出版社, 2010.
[3] Xie D W, Dai Z, Yang Z, et al. Genomic variations and association study of agronomic traits in flax. Bmc Genomics, 2018, 19(1):512-517.
doi: 10.1186/s12864-018-4899-z
[4] Bogachev A A, Gavrilova N A, Kurdyukov E E, et al. Comparative study of component and fatty-acid composition of flax seed. International Journal of Molecular Sciences, 2018, 19(8):2303.
doi: 10.3390/ijms19082303
[5] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20(2):176-183.
pmid: 8020964
[6] 赵利, 党占海, 张建平. 甘肃胡麻地方品种种质资源品质分析. 中国油料作物学报, 2006, 28(3):282-286.
[7] 伊六喜, 斯钦巴特尔,张辉,等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017, 39(5):794-804.
[8] 张琼, 王利民, 张建平, 等. 胡麻重组自交系脂肪酸含量的遗传分析. 生物技术通报2015, 31(12):115-121.
[9] Cloutier S, Niu Z, Datla R, et al. Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theoretical and Applied Genetics, 2009, 119(1):53-63.
doi: 10.1007/s00122-009-1016-3 pmid: 19357828
[10] Wu J Z, Zhao Q, Wu G W, et al. Development of novel SSR markers for flax (Linum usitatissimum L.) using reduced-representation genome sequencing. Frontiers in Plant Science, 2017, 7:2018.
[11] Choudhary S B, Sharma H K, Kumar A A, et al. SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions. Comptes Rendus Biologies, 2017, 340(2):65-75.
doi: S1631-0691(16)30194-9 pmid: 28188068
[12] Stewart C N, Via L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14(5):748-750.
pmid: 8512694
[13] 王希, 陈丽, 赵春雷. 利用MISA工具对不同类型序列进行SSR标记位点挖掘的探讨. 中国农学通报, 2016, 32(10):150-156.
[14] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010, 45(2):4-6.
[15] Yang J, Yu H Y, Li X J, et al. Genetic diversity and population structure of Commelina communis in China based on simple sequence repeat markers. Journal of Integrative Agriculture, 2018, 17(10):2292-2301.
doi: 10.1016/S2095-3119(18)61906-9
[16] 司二静, 张宇, 汪军成, 等. 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015, 41(7):1064-1072.
[17] 孟亚雄, 孟祎林, 汪军成, 等. 青稞遗传多样性及其农艺性状与SSR标记的关联分析. 作物学报, 2016, 42(2):180-189.
[18] Chen X, Min D, Yasir T A, et al. Genetic diversity,population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE, 2012, 7(9):e44510.
doi: 10.1371/journal.pone.0044510
[19] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure:a simulation study. Molecular Ecology, 2005, 14:2611-2620.
pmid: 15969739
[20] 伊六喜, 高凤云, 周宇, 等. 胡麻种质资源表型性状的鉴定与分析. 中国油料作物学报, 2020, 42(3):91-99.
[21] Braulio J S-C, Iván Maureira-Butler, Gastón Muñoz, et al. SSR-based population structure,molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Molecular Breeding, 2012, 30(2):875-888.
doi: 10.1007/s11032-011-9670-y
[22] Saha D, Rana R S, Das S, et al. Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. Journal of Applied Genetics, 2019.
[23] 谭贤杰, 吴子恺, 程伟东, 等. 关联分析及其在植物遗传学研究中的应用. 植物学报, 2011(1):108-118.
[1] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[2] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[3] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[4] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[5] 李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响[J]. 作物杂志, 2022, (1): 205–212
[6] 冯素芬, 刘元剑, 许蕊淇, 张薇. 云南省近年审定鲜食玉米品种的主要性状分析[J]. 作物杂志, 2022, (1): 220–226
[7] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[8] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[9] 周乾聪, 陈乐, 罗亢, 刘梦洁, 宋永苹, 谢小兵, 曾勇军. 氮素穗肥运筹方式对杂交晚粳稻产量和品质的影响[J]. 作物杂志, 2021, (6): 129–133
[10] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
[11] 李阳, 杨晓龙, 汪本福, 张枝盛, 陈少愚, 李进兰, 程建平. 头季留茬高度对水稻再生季产量和稻米品质的影响[J]. 作物杂志, 2021, (6): 164–170
[12] 王初亮, 宋文峰, 关罗浩, 谢晋, 黄浩, 李旺阳, 王维. 云南红河烟区覆膜方式及移栽苗龄对烤烟产量和品质形成的影响[J]. 作物杂志, 2021, (6): 95–100
[13] 刘威, 周剑雄, 谢媛圆, 张旭, 熊又升, 徐祥玉, 袁家富, 熊汉锋. 氮肥一次性基施对夏播鲜食甜玉米产量、品质和氮素利用效率的影响[J]. 作物杂志, 2021, (5): 134–139
[14] 马超, 李晓慧, 班甜甜, 梁蝶. 有机栽培与常规栽培蔬菜的营养品质分析比较[J]. 作物杂志, 2021, (5): 166–171
[15] 刘鑫, 李会霞, 田岗, 王玉文, 刘红, 曹晋军, 成锴, 王振华, 刘永忠, 李万星. 全生育期水分控制对谷子生长发育及品质的影响[J]. 作物杂志, 2021, (5): 181–186
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!