作物杂志,2024, 第2期: 54–61 doi: 10.16035/j.issn.1001-7283.2024.02.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

马铃薯细胞壁蔗糖转化酶基因StCWIN1启动子克隆与表达及其在干旱胁迫下的作用分析

张玉1(), 杨文静1, 刘璇1, 聂峰杰1, 张丽1, 石磊1, 张国辉2, 郭志乾2, 巩檑1()   

  1. 1宁夏农林科学院农业生物技术研究中心/宁夏农业生物技术重点实验室,750002,宁夏银川
    2宁夏农林科学院固原分院,756000,宁夏固原
  • 收稿日期:2023-02-21 修回日期:2023-03-05 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 巩檑,主要从事马铃薯资源鉴定及分子育种研究,E-mail:tea_gl@126.com
  • 作者简介:张玉,研究方向为植物生物技术育种,E-mail:nxzy_work@163.com
  • 基金资助:
    国家自然科学基金(31860419);国家自然科学基金(32260504);宁夏回族自治区农业育种专项(2019NYYZ01-2);宁夏自然科学基金(2021AAC05015)

Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress

Zhang Yu1(), Yang Wenjing1, Liu Xuan1, Nie Fengjie1, Zhang Li1, Shi Lei1, Zhang Guohui2, Guo Zhiqian2, Gong Lei1()   

  1. 1Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences /Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan 750002, Ningxia, China
    2Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, Ningxia, China
  • Received:2023-02-21 Revised:2023-03-05 Online:2024-04-15 Published:2024-04-15

摘要:

植物细胞壁蔗糖转化酶(cell wall invertase,CWIN)是源、库组织蔗糖代谢及胁迫应答的关键酶。本研究利用基因步移法克隆马铃薯StCWIN1启动子片段,应用PlantCARE在线软件对启动子区域的作用元件进行分析,将融合StCWIN1启动子与GUS报告基因的表达载体转化拟南芥野生型,并利用组织化学染色和GUS实时定量PCR技术探究启动子表达活性、组织表达特性和响应干旱胁迫的表达规律。结果表明,克隆获得StCWIN1基因上游1956 bp启动子序列,其中包含核心调控、植物激素、防御及胁迫、光响应等关键元件;StCWIN1启动子在根、柱头和果荚组织中的表达活性高于其他组织;转StCWIN1启动子拟南芥株系叶片中GUS表达量高于野生型,且干旱胁迫显著抑制了GUS相对表达量。本研究克隆得到具有活性的StCWIN1启动子,基于研究结果推测目的基因可能参与根、花和果实等器官发育,对干旱胁迫也发挥应答调节作用。

关键词: 马铃薯, 细胞壁蔗糖转化酶, 启动子, GUS活性, 干旱胁迫, 表达分析

Abstract:

Cell wall invertase (CWIN) is a key enzyme for stress responses and sucrose metabolism in source and sink tissues. In this study, the promoter sequence of StCWIN1 was cloned by genomic walking, and its cis-regulatory elements were analysed by using PlantCARE. A GUS-fused StCWIN1 promoter expression vector was constructed and subsequently transformed into Arabidopsis thaliana. Promoter activity, tissue expression characteristics and responsiveness to drought stress were investigated by histochemical staining and real-time quantitative PCR. The results showed that the StCWIN1 promoter was 1956 bp long and contained enhancer- regulated, phytohormone-responsive, protective/stress-responsive and light-responsive elements. The expression activity of StCWIN1 promoter were higher in roots, stigmas, and pods than other tissues. The expression of GUS in leaves of Arbidopsis Thaliana with StCWIN1 promoter was higher than that of wild type, and the value was significantly reduced under drought stress. The identification of the active StCWIN1 promoter in the present study suggests that StCWIN1 may be involved in the development of organs such as roots, flowers and fruit pods, and may also function in response to drought stress.

Key words: Solanum tuberosum L., Cell wall invertase, Promoter, GUS activity, Drought stress, Expression analysis

表1

本试验所用引物

引物名称Primer name 引物序列Primer sequence (5’-3’) 用途Function
pCWIN-NeGW
F1:AACATTTTTCACATCAACCGTG
F2:GATGAAACAGTTCCACACACTACC
启动子扩增
pCWIN-positive selection
F:CAAATGATAAGTTACACCATC
R:TTTAAATCAGATTTCTACGAG
阳性植株筛选
GUS-RT-F/R
F:ATACCGAAAGGTTGGGCAGG
R:CGGCAATAACATACGGCGTG
实时定量GUS基因
Actin
F:GGTAACATTGTGCTCAGTGGTGG
R:AACGACCTTAATCTTCATGCTGC
实时定量内参基因

图1

StCWIN1基因启动子序列扩增 M:DL2000;1:启动子序列扩增产物。

图2

StCWIN1启动子调控元件

表2

StCWIN1启动子调控元件分析

元件Element 数量Amount 位置Position 序列Sequence 功能Function
ERE

3

993(+)
1018(-)
1016(+)
ATTTTAAA

乙烯响应元件

Box 4

3

737(+)
1559(-)
1098(-)
ATTAAT

光响应元件

ABRE
2
812(+)
1259(+)
ACGTG
脱落酸响应元件
O2-site
2
749(-)
1672(-)
GATGATGTGG/GTTGACGTGA
参与玉米蛋白代谢调控元件
CGTCA-motif 1 1606(+) CGTCA 茉莉酸甲酯响应元件
TGA-element 1 78(+) AACGAC 生长素响应元件
LTR 1 604(+) CCGAAA 低温胁迫响应元件
TC-rich repeats 1 1286(-) GTTTTCTTAC 防御及胁迫响应元件
ARE 1 1369(+) AAACCA 厌氧诱导必需的调控元件
MYB 1 503(+) TAACCA MYB转录因子作用元件
circadian 1 179(-) CAAAGATATC 昼夜节律调节元件

图3

转PStCWIN1-GUS拟南芥与野生型拟南芥不同组织中的GUS染色 a~e:转基因拟南芥(a:根;b:叶片;c:茎;d:花;e:果荚);f~j:野生型拟南芥(f:叶片;g:花;h:果荚;i:根;j:茎)。

图4

转PStCWIN1-GUS拟南芥GUS活性 (a) GUS活性分析,(b) GUS定量分析,***:P < 0.001。

图5

干旱胁迫下转PStCWIN1-GUS拟南芥GUS相对表达量 “**”表示处理间差异显著(P < 0.01)。

[1] Li J, Foster R, Ma S, et al. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. The Plant Journal, 2021, 106(4):1058-1074.
doi: 10.1111/tpj.15218 pmid: 33650173
[2] Ruan Y L, Jin Y, Yang Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant, 2010, 3(6):942-955.
doi: 10.1093/mp/ssq044
[3] Sherson S M, Alford H L, Forbes S M, et al. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany, 2003, 54(382):525-531.
doi: 10.1093/jxb/erg055 pmid: 12508063
[4] Goetz M, Guivarćh A, Hirsche J, et al. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiology, 2017, 173(2):984-997.
doi: 10.1104/pp.16.01601 pmid: 27923989
[5] Zanor M I, Osorio S, Nunes-Nesi A, et al. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 2009, 150(3):1204-1218.
doi: 10.1104/pp.109.136598 pmid: 19439574
[6] Wang E T, Wang J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40(11):1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[7] Li B, Liu H, Zhang Y, et al. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnology Journal, 2013, 11(9):1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950
[8] Nishanth M J, Sheshadri S A, Rathore S S, et al. Expression analysis of cell wall invertase under abiotic stress conditions influencing specialized metabolism in Catharanthus roseus. Scientific Reports, 2018, 8(1):15059.
doi: 10.1038/s41598-018-33415-w pmid: 30305670
[9] Wang L M, Zheng Y X, Ding S H, et al. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology, 2017, 17(1):109.
doi: 10.1186/s12870-017-1052-0 pmid: 28645264
[10] Koonjul P K, Minhas J S, Nunes C, et al. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. Journal of Experimental Botany, 2005, 56(409):179-190.
doi: 10.1093/jxb/eri018 pmid: 15533880
[11] Sturm A, Chrispeels M J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. The Plant Cell, 1990, 2(11):1107-1119.
[12] Deryabin A N, Burakhanova E A, Trunova T I. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia. Doklady Biochem Biophys, 2015, 465:366-369.
doi: 10.1134/S160767291506006X
[13] Tymowska-Lalanne Z, Kreis M. The plant invertases: physiology, biochemistry and molecular biology. Advances in Botanical Research, 1998, 28:71-117.
[14] 谢望, 李天静, 李鑫窈, 等. 胡杨PeNAC121基因启动子的分离鉴定和胁迫应答模式分析. 植物研究, 2022, 42(2):234-242.
doi: 10.7525/j.issn.1673-5102.2022.02.008
[15] 李杨, 曹高燚, 丁博, 等. 控制基因盐诱导且根系优势表达的小麦启动子Tasipro3克隆及功能分析. 植物遗传资源学报, 2020, 21(2):459-465.
doi: 10.13430/j.cnki.jpgr.20190523001
[16] Webster H, Keeble G, Dell B, et al. Genome-level identification of cell wall invertase genes in wheat for the study of drought tolerance. Functional Plant Biology, 2012, 39(7):569-579.
doi: 10.1071/FP12083 pmid: 32480809
[17] Wang Y Q, Wei X L, Xu H L, et al. Cell-wall invertases from rice are differentially expressed in caryopsis during the grain filling stage. Journal of Integrative Plant Biology, 2008, 50(4):466-474.
doi: 10.1111/jipb.2008.50.issue-4
[18] Juárez-Colunga S, López-González C, Morales-Elías N C, et al. Genome-wide analysis of the invertase gene family from maize. Plant Molecular Biology, 2018, 97(4):385-406.
doi: 10.1007/s11103-018-0746-5
[19] Proels R K, Roitsch T. Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. Journal of Experimental Botany, 2009, 60(6):1555-1567.
doi: 10.1093/jxb/erp027 pmid: 19297549
[20] Niu J Q, Wang A Q, Huang J L, et al. Isolation, characterization and promoter analysis of cell wall invertase gene SoCIN1 from sugarcane (Saccharum spp.). Sugar Tech, 2015, 17(1):65-76.
doi: 10.1007/s12355-014-0348-8
[21] 赵静, 蔡深文, 徐仲瑞, 等. 海州香薷(Elsholtzia haichowensis Sun)细胞壁转化酶基因启动子(EhcwINVP)的克隆及活性分析. 植物科学学报, 2016, 34(3):420-429.
[22] Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1):325-327.
[23] 孔佑宾, 李喜焕, 张彩英. 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析. 中国农业科学, 2017, 50(3):582-590.
doi: 10.3864/j.issn.0578-1752.2017.03.017
[24] 闫丽, 杨强, 邵宇鹏, 等. 大豆GmWRI1a基因启动子克隆及序列分析. 作物杂志, 2017(2):51-58.
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 2012, 63(3):1155-1166.
doi: 10.1093/jxb/err329 pmid: 22105847
[27] Oliver S N, Van Dongen J T, Alfred S C, et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant,Cell and Environment, 2005, 28(12):1534-1551.
doi: 10.1111/pce.2005.28.issue-12
[28] Ji X M, Shiran B, Wan J L, et al. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant,Cell and Environment, 2010, 33(6):926-942.
doi: 10.1111/pce.2010.33.issue-6
[29] Abbas A, Shah A N, Shah A A, et al. Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 2022, 11(4):539.
doi: 10.3390/biology11040539
[30] Ou Y B, Song B T, Liu X, et al. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones. Plant Physiology and Biochemistry, 2013, 69:9-16.
doi: 10.1016/j.plaphy.2013.04.015 pmid: 23688776
[31] 刘姣, 胡艳平, 周扬, 等. 木薯细胞壁酸性转化酶基因MeCWINV1启动子的克隆及其在烟草中的瞬时表达分析. 分子植物育种, 2014, 12(6):1169-1174.
[32] Hedley P E, Maddison A L, Davidson D, et al. Differential expression of invertase genes in internal and external phloem tissues of potato (Solanum tuberosum L.). Journal of Experimental Botany, 2000, 51(345):817-821.
pmid: 10938874
[33] Maddison A L, Hedley P E, Meyer R C, et al. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Molecular Biology, 1999, 41(6):741-752.
doi: 10.1023/a:1006389013179 pmid: 10737139
[34] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mchanisms. International Journal of Molecular Sciences, 2015, 16(7):15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177
[35] Freitas E O, Melo B P, Lourenço-Tessutti I T, et al. Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application. BMC Biotechnology, 2019, 19(1):79.
doi: 10.1186/s12896-019-0561-3 pmid: 31747926
[36] 李豆, 苏功博, 胡晓晴, 等. 白桦BpSPL6基因启动子的克隆及表达分析. 北京林业大学学报, 2022, 44(2):1-10.
[1] 张俊, 蔡苏云, 徐子豪, 侯蕾, 贺润丽, 尹桂芳, 王莉花, 王艳青, 卢文洁, 孙道旺. 苦荞FtERF基因克隆、生物信息学及其表达分析[J]. 作物杂志, 2024, (2): 23–29
[2] 李盛, 李翔, 朱美如, 王夏, 李昊阳, 谭欣如, 王海燕. 马铃薯青枯病拮抗菌的筛选及温室防治效果研究[J]. 作物杂志, 2024, (2): 242–248
[3] 张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析[J]. 作物杂志, 2024, (2): 30–39
[4] 毋莹, 胡蝶, 李婷, 段乾元, 韦宁宁, 张兴华, 徐淑兔, 薛吉全. 玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志, 2024, (1): 80–89
[5] 白菁华, 贾晓梅, 吴艳清, 王悦坤, 宋伟扬, 刘伊诺. DSE抵抗非生物胁迫及增强马铃薯抗旱效应[J]. 作物杂志, 2023, (6): 150–159
[6] 许世豪, 赵春波, 皇甫丽云, 范欣桐, 陈姗姗, 韩忠才, 韩玉珠. 不同钾源对马铃薯钾营养积累、转运及产量因子的影响[J]. 作物杂志, 2023, (6): 202–208
[7] 张蓉, 陈晓文, 路平, 尤艳蓉, 周德录, 李德明. 不同覆盖模式对旱地马铃薯土壤水热变化和产量的影响[J]. 作物杂志, 2023, (5): 145–150
[8] 韩祉君, 赵艳菲, 卢悦, 李爽, 张嘉越, 韩玉珠, 张婧颖. 马铃薯氮同化关键酶基因StGOGATs的克隆及结构与功能分析[J]. 作物杂志, 2023, (5): 71–80
[9] 胡新元, 柳永强, 谢奎忠, 孙小花, 罗爱花. 旱区有机肥替代氮肥对多年连作土壤理化性质和马铃薯品质的影响[J]. 作物杂志, 2023, (4): 159–164
[10] 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 马铃薯生长及生理特性对水分胁迫的响应研究综述[J]. 作物杂志, 2023, (4): 16–21
[11] 翟鑫娜, 杨佳伟, 许春江, 祁利潘, 田再民, 冯琰, 尹江, 龚学臣. 嫁接对马铃薯种间杂交亲和性的影响及生理调控机制[J]. 作物杂志, 2023, (4): 182–187
[12] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[13] 娄树宝, 杨梦平, 邢金月, 翟玲侠, 王辉, 刘春生, 王立春, 宋继玲. 马铃薯种质资源抗病毒分子标记辅助筛选[J]. 作物杂志, 2023, (4): 65–70
[14] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[15] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!